Extending mechanistic thermal-hydraulic modelling and dynamic simulation for new industrial applications

    Research output: ThesisDissertationCollection of Articles

    Abstract

    The process and energy industries have a remarkable position in developing sustainable future. They play an important role in mitigating climate change. Whilst aiming at energy efficient, material recycling, and emission-free processes, the industrial systems are becoming more complex. Process automation is fundamental in confirming that also complex systems can be managed and operated in an easy and safe way. Dynamic system-wide process simulation is practically the only way to verify the interoperability of the process and control solutions before building up the system. For the systems in operation, it enables virtual realistic studies without disturbances or risks for the actual process or people. The qualitative research approach in this work is case study. The modelling and dynamic simulation software Apros is used in five distinct cases, which extend the modelling from traditional nuclear and conventional power plant applications to a board machine, a carbon dioxide capturing power plant, ship energy systems, a seawater desalination plant, and a molten salt based energy storage system. The methodology relies on mechanistic thermal-hydraulic modelling and dynamic simulation. Method development was performed to model and simulate the application specific unit operations and working fluids. The functionality of the basic methodology and the extensions are demonstrated in the cases. The results of the work can be used in research and commercial simulation projects. New unit operation models and improvements for the fluid property calculation provide a variety of new potential applications. The model validation results help to estimate prediction capability in similar applications. The simulation applications guide modellers to use the methodology in both the presented and new areas. Regarding the case-specific results, the board machine simulator helped to understand complex interactions related to grade changes, to tune the related automation, and thus to shorten the grade change times. The simulation of the ship energy systems revealed design deficiencies and assisted in troubleshooting related problems during the commissioning. The study on the thermal energy storage facility uncovered systematic anomalous behaviour in the molten salt flow path. Based on the cross-case analysis, it can be stated that the methodology can be successfully applied beyond its traditional application domain and that it provides meaningful and valuable benefits. Furthermore, the methodology supports versatile use of the simulation model during the life cycle of an industrial plant: in R&D, design, testing, operator training and further development of the operating plant. The challenges that the process and energy industries meet today, require consideration of the interactions and dynamics of the process and automation systems together. The methodology used and further extended provides a valuable tool for tackling these challenges.
    Original languageEnglish
    QualificationDoctor Degree
    Awarding Institution
    • Aalto University
    Supervisors/Advisors
    • Alopaeus, Ville, Supervisor, External person
    • Alopaeus, Ville, Advisor, External person
    • Korvola, Timo, Advisor
    • Karhela, Tommi, Advisor, External person
    Award date8 Nov 2019
    Place of PublicationHelsinki
    Publisher
    Print ISBNs978-952-60-8758-0
    Electronic ISBNs978-952-60-8759-7
    Publication statusPublished - 8 Nov 2019
    MoE publication typeG5 Doctoral dissertation (article)

    Fingerprint

    Industrial applications
    Hydraulics
    Computer simulation
    Automation
    Energy storage
    Molten materials
    Power plants
    Ships
    Salts
    Fluids
    Desalination
    Thermal energy
    Seawater
    Interoperability
    Climate change
    Industrial plants
    Hot Temperature
    Recycling
    Large scale systems
    Life cycle

    Keywords

    • Industrial process
    • computational modelling
    • process modelling
    • mechanistic model
    • thermal-hydraulic
    • dynamic simulation
    • process control
    • simulation-aided engineering

    Cite this

    @phdthesis{38ef95e96fa943f1a439e19dcaf670cc,
    title = "Extending mechanistic thermal-hydraulic modelling and dynamic simulation for new industrial applications",
    abstract = "The process and energy industries have a remarkable position in developing sustainable future. They play an important role in mitigating climate change. Whilst aiming at energy efficient, material recycling, and emission-free processes, the industrial systems are becoming more complex. Process automation is fundamental in confirming that also complex systems can be managed and operated in an easy and safe way. Dynamic system-wide process simulation is practically the only way to verify the interoperability of the process and control solutions before building up the system. For the systems in operation, it enables virtual realistic studies without disturbances or risks for the actual process or people. The qualitative research approach in this work is case study. The modelling and dynamic simulation software Apros is used in five distinct cases, which extend the modelling from traditional nuclear and conventional power plant applications to a board machine, a carbon dioxide capturing power plant, ship energy systems, a seawater desalination plant, and a molten salt based energy storage system. The methodology relies on mechanistic thermal-hydraulic modelling and dynamic simulation. Method development was performed to model and simulate the application specific unit operations and working fluids. The functionality of the basic methodology and the extensions are demonstrated in the cases. The results of the work can be used in research and commercial simulation projects. New unit operation models and improvements for the fluid property calculation provide a variety of new potential applications. The model validation results help to estimate prediction capability in similar applications. The simulation applications guide modellers to use the methodology in both the presented and new areas. Regarding the case-specific results, the board machine simulator helped to understand complex interactions related to grade changes, to tune the related automation, and thus to shorten the grade change times. The simulation of the ship energy systems revealed design deficiencies and assisted in troubleshooting related problems during the commissioning. The study on the thermal energy storage facility uncovered systematic anomalous behaviour in the molten salt flow path. Based on the cross-case analysis, it can be stated that the methodology can be successfully applied beyond its traditional application domain and that it provides meaningful and valuable benefits. Furthermore, the methodology supports versatile use of the simulation model during the life cycle of an industrial plant: in R&D, design, testing, operator training and further development of the operating plant. The challenges that the process and energy industries meet today, require consideration of the interactions and dynamics of the process and automation systems together. The methodology used and further extended provides a valuable tool for tackling these challenges.",
    keywords = "Industrial process, computational modelling, process modelling, mechanistic model, thermal-hydraulic, dynamic simulation, process control, simulation-aided engineering",
    author = "Lappalainen, {Jari T.J.}",
    year = "2019",
    month = "11",
    day = "8",
    language = "English",
    isbn = "978-952-60-8758-0",
    series = "Aalto University Publication Series: Doctoral Dissertations",
    publisher = "Aalto University",
    number = "185",
    address = "Finland",
    school = "Aalto University",

    }

    Extending mechanistic thermal-hydraulic modelling and dynamic simulation for new industrial applications. / Lappalainen, Jari T.J.

    Helsinki : Aalto University, 2019. 77 p.

    Research output: ThesisDissertationCollection of Articles

    TY - THES

    T1 - Extending mechanistic thermal-hydraulic modelling and dynamic simulation for new industrial applications

    AU - Lappalainen, Jari T.J.

    PY - 2019/11/8

    Y1 - 2019/11/8

    N2 - The process and energy industries have a remarkable position in developing sustainable future. They play an important role in mitigating climate change. Whilst aiming at energy efficient, material recycling, and emission-free processes, the industrial systems are becoming more complex. Process automation is fundamental in confirming that also complex systems can be managed and operated in an easy and safe way. Dynamic system-wide process simulation is practically the only way to verify the interoperability of the process and control solutions before building up the system. For the systems in operation, it enables virtual realistic studies without disturbances or risks for the actual process or people. The qualitative research approach in this work is case study. The modelling and dynamic simulation software Apros is used in five distinct cases, which extend the modelling from traditional nuclear and conventional power plant applications to a board machine, a carbon dioxide capturing power plant, ship energy systems, a seawater desalination plant, and a molten salt based energy storage system. The methodology relies on mechanistic thermal-hydraulic modelling and dynamic simulation. Method development was performed to model and simulate the application specific unit operations and working fluids. The functionality of the basic methodology and the extensions are demonstrated in the cases. The results of the work can be used in research and commercial simulation projects. New unit operation models and improvements for the fluid property calculation provide a variety of new potential applications. The model validation results help to estimate prediction capability in similar applications. The simulation applications guide modellers to use the methodology in both the presented and new areas. Regarding the case-specific results, the board machine simulator helped to understand complex interactions related to grade changes, to tune the related automation, and thus to shorten the grade change times. The simulation of the ship energy systems revealed design deficiencies and assisted in troubleshooting related problems during the commissioning. The study on the thermal energy storage facility uncovered systematic anomalous behaviour in the molten salt flow path. Based on the cross-case analysis, it can be stated that the methodology can be successfully applied beyond its traditional application domain and that it provides meaningful and valuable benefits. Furthermore, the methodology supports versatile use of the simulation model during the life cycle of an industrial plant: in R&D, design, testing, operator training and further development of the operating plant. The challenges that the process and energy industries meet today, require consideration of the interactions and dynamics of the process and automation systems together. The methodology used and further extended provides a valuable tool for tackling these challenges.

    AB - The process and energy industries have a remarkable position in developing sustainable future. They play an important role in mitigating climate change. Whilst aiming at energy efficient, material recycling, and emission-free processes, the industrial systems are becoming more complex. Process automation is fundamental in confirming that also complex systems can be managed and operated in an easy and safe way. Dynamic system-wide process simulation is practically the only way to verify the interoperability of the process and control solutions before building up the system. For the systems in operation, it enables virtual realistic studies without disturbances or risks for the actual process or people. The qualitative research approach in this work is case study. The modelling and dynamic simulation software Apros is used in five distinct cases, which extend the modelling from traditional nuclear and conventional power plant applications to a board machine, a carbon dioxide capturing power plant, ship energy systems, a seawater desalination plant, and a molten salt based energy storage system. The methodology relies on mechanistic thermal-hydraulic modelling and dynamic simulation. Method development was performed to model and simulate the application specific unit operations and working fluids. The functionality of the basic methodology and the extensions are demonstrated in the cases. The results of the work can be used in research and commercial simulation projects. New unit operation models and improvements for the fluid property calculation provide a variety of new potential applications. The model validation results help to estimate prediction capability in similar applications. The simulation applications guide modellers to use the methodology in both the presented and new areas. Regarding the case-specific results, the board machine simulator helped to understand complex interactions related to grade changes, to tune the related automation, and thus to shorten the grade change times. The simulation of the ship energy systems revealed design deficiencies and assisted in troubleshooting related problems during the commissioning. The study on the thermal energy storage facility uncovered systematic anomalous behaviour in the molten salt flow path. Based on the cross-case analysis, it can be stated that the methodology can be successfully applied beyond its traditional application domain and that it provides meaningful and valuable benefits. Furthermore, the methodology supports versatile use of the simulation model during the life cycle of an industrial plant: in R&D, design, testing, operator training and further development of the operating plant. The challenges that the process and energy industries meet today, require consideration of the interactions and dynamics of the process and automation systems together. The methodology used and further extended provides a valuable tool for tackling these challenges.

    KW - Industrial process

    KW - computational modelling

    KW - process modelling

    KW - mechanistic model

    KW - thermal-hydraulic

    KW - dynamic simulation

    KW - process control

    KW - simulation-aided engineering

    M3 - Dissertation

    SN - 978-952-60-8758-0

    T3 - Aalto University Publication Series: Doctoral Dissertations

    PB - Aalto University

    CY - Helsinki

    ER -