Abstract
Transgenic plants are attractive bioreactors to large-scale production of recombinant proteins because of their relatively low cost. This study reports for the first time the use of transgenic plants to reduce enterotoxigenic Escherichia coli (ETEC) excretion in its natural host species. The DNA sequence encoding the major subunit and adhesin FaeG of F4+ ETEC was transformed into edible alfalfa plants. Targeting of FaeG production to chloroplasts led to FaeG levels of up to 1% of the total soluble protein fraction of the transgenic alfalfa. Recombinant plant-produced FaeG (pFaeG) remained stable for 2 years when the plant material was dried and stored at room temperature. Intragastric immunization of piglets with pFaeG induced a weak F4-specific humoral response. Co-administration of pFaeG and the mucosal adjuvant cholera toxin (CT) enhanced the immune response against FaeG, reflected a better induction of an F4-specific immune response. In addition, the intragastric co-administration of CT with pFaeG significantly reduced F4+ E. coli excretion following F4+ ETEC challenge as compared with pigs that had received nontransgenic plant material. In conclusion, transgenic plants producing the FaeG subunit protein could be used for production and delivery of oral vaccines against F4+ ETEC infections.
Original language | English |
---|---|
Pages (from-to) | 2387-2394 |
Number of pages | 8 |
Journal | Vaccine |
Volume | 24 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2006 |
MoE publication type | A1 Journal article-refereed |
Keywords
- F4 (K88) fimbriae
- Enterotoxigenic Escherichia coli
- Plant-made vaccine
- Alfalfa
- Chloroplast targeting
- Piglet