Fatigue performance of austenitic stainless steel: Enforced endurance limit and questionable design curve

Jussi Solin*, Tommi Seppänen, Wolfgang Mayinger

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review

1 Citation (Scopus)

Abstract

Design codes and standards are used for new designs and also for management of operation and in service inspection of existing NPP primary circuit pressure boundaries. The current codes - ASME, KTA, RCC-M, PNAE-G and JSME - have been originally rooted to the ASME Boiler and Pressure Vessel Code, Section III, Nuclear Vessels, which was published in 1963. Article 4, N-415 “Analysis for cyclic operation” instructed calculation of stress intensities for fatigue transients and provided two design curves for basic material types - one for ferritic, the other for austenitic steels. The design curves were based on strain-controlled LCF tests, which measured the allowable numbers of cycles as function of plastic strain. The obtained material performance was then processed to strain-life and design curves (Sa = E x ea ). This local strain fatigue approach was found applicable for both ferritic and austenitic steels though their elastic plastic cyclic responses are much different. Fatigue data for stainless steels extended to ¼ million cycles and the design curve was extrapolated to one million cycles. Later on - supported by load-controlled HCF tests - the original LCF approach has been extended even beyond HCF to VHCF regime. Our strain-controlled HCF results for alloy types 347 and 304L are in conflict with the reference mean curve behind current ASME curve for stainless steels. We assume that this reflects a generic issue related to extrapolation of the LCF methodology by Coffin, Langer and other pioneers. Furthermore, analysis of cyclic responses and variable amplitude testing to millions of cycles give reasons to assume that the concept of an endurance limit (Se ) is applicable also for variable amplitude straining. Variable amplitude HCF straining was not studied for ferritic steels and we propose the concept of enforced endurance limit to austenitic stainless steels only. We propose a critical review on relevance of the current ASME III design curve for stainless steels.

Original languageEnglish
Title of host publicationASME 2020 Pressure Vessels & Piping Conference
Subtitle of host publicationCodes and Standards
PublisherAmerican Society of Mechanical Engineers (ASME)
Number of pages9
Volume1
ISBN (Electronic)978-0-7918-8381-5
DOIs
Publication statusPublished - 28 Oct 2020
MoE publication typeA4 Article in a conference publication
EventASME 2020 Pressure Vessels and Piping Conference, PVP 2020: Online - Virtual, Virtual, Online
Duration: 3 Aug 20203 Aug 2020

Publication series

SeriesAmerican Society of Mechanical Engineers. Pressure Vessels and Piping Division. Publication PVP
Volume2020
ISSN0277-027X

Conference

ConferenceASME 2020 Pressure Vessels and Piping Conference, PVP 2020
CityVirtual, Online
Period3/08/203/08/20

Funding

The reported experiments and analysis - excluding Fig. 9 - are part of the Technical Programme of E.ON Case on Thermal Transients funded by PreussenElektra GmbH (formerly E.ON Kernkraft GmbH). All experiments were carried out at VTT, mainly by Esko Arilahti and Jouni Alhainen.

Keywords

  • HCF
  • Spectrum fatigue
  • Stainless steel

Fingerprint

Dive into the research topics of 'Fatigue performance of austenitic stainless steel: Enforced endurance limit and questionable design curve'. Together they form a unique fingerprint.

Cite this