Finite element analysis of coating adhesion failure in pre-existing crack field

Kenneth Holmberg (Corresponding Author), Anssi Laukkanen, Helena Ronkainen, Kim Wallin

    Research output: Contribution to journalArticleScientificpeer-review

    5 Citations (Scopus)


    The influence of a pre-existing crack field on coating adhesion failure in a steel surface coated with a 2 μm thick titanium nitride (TiN) coating was investigated by finite element method modelling and simulation. The stress and strain fields were determined in contact conditions with a spherical diamond tip sliding over the coated surface at a loading of 8 N. One crack in or at the coating increased the maximum tensile stresses with six times from 82 to 540 MPa when the crack was vertical through the coating or L shaped and with nine times when the crack was horizontal at the coating/substrate interface. A simulated multicrack pattern relaxed the tensile stresses compared to single cracks. The results indicate that a cracked coated surface needs to have about five to nine times higher adhesive and cohesive bonds to resist the same loading without crack growth compared to a crack free surface. For optimal coated surface design, the strength of the adhesive bonds between the coating and the substrate in the vertical direction needs to be 50% higher than the cohesive bonds within the coating and the substrate in the horizontal direction. The first crack is prone to start at the top of the coating and grows vertically down to coating/substrate interface, and there it stops due to the bigger cohesion within the steel material. After this, there are two effects influencing that the crack will grow in the lateral direction. One is that steel cohesion is normally bigger than the coating/interface adhesion, and the second is that there are higher tensile stresses in the horizontal than in the vertical cracks. Several vertical cracks can stop the horizontal crack growth due to stress relaxation.
    Original languageEnglish
    Pages (from-to)42-51
    JournalTribology: Materials, Surfaces & Interfaces
    Issue number1
    Publication statusPublished - 2013
    MoE publication typeA1 Journal article-refereed


    • coating
    • crack
    • finite element method
    • fracture
    • scratch test
    • ProperTune


    Dive into the research topics of 'Finite element analysis of coating adhesion failure in pre-existing crack field'. Together they form a unique fingerprint.

    Cite this