Abstract
Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.
Original language | English |
---|---|
Pages (from-to) | 1009-1018 |
Number of pages | 10 |
Journal | Journal of Thermal Spray Technology |
Volume | 23 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2014 |
MoE publication type | A1 Journal article-refereed |
Keywords
- coatings
- fracture toughness
- HVOF
- process maps
- residual stress
- ProperTune