Abstract
The sizes of astronomical surveys are increasing rapidly. Hence, the automatic classification of objects is growing more important. This classification is traditionally based, e.g., on point-spread function fitting. Recently several different neural network approaches have been introduced. In this paper we introduce a simple method that is based on fuzzy set reasoning. The analysis presented here concentrates on separating point sources (stars) from extended ones. The tests show that the neural network approach is superior if compared to direct fuzzy classification. The paper shows that the inherent ability of neural networks to process complex nonlinear data justifies the use of them in astronomical classification. However, a combined fuzzy and neural network approach can be useful at least in special cases.
Original language | English |
---|---|
Pages (from-to) | 261-264 |
Journal | The Astrophysical journal |
Volume | 541 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2000 |
MoE publication type | A1 Journal article-refereed |