Abstract
The two most widespread pentose sugars in our biosphere are D-xylose and
L-arabinose. The pentose catabolic pathways are relevant for microorganisms
living on decaying plant material and also in biotechnology when cheap raw
materials such as plant hydrolysates are fermented to ethanol. In fungi, i.e.
in yeast and mold, L-arabinose is sequentially converted to L-arabinitol,
L-xylulose, xylitol and D-xylulose and enters the pentose phosphate pathway as
D-xylulose 5-phosphate. In molds the reductions are NADPH-linked and the
oxidations are NAD+-linked. We recently identified the two missing genes in
this pathway. The functional overexpression of all the genes of the pathway in
S. cerevisiae led to growth on L-arabinose and ethanol production under
anaerobic conditions however at very low rates. In this communication we show
that in a yeast species the L-arabinose pathway is similar, i.e. it has the
same two reduction and two oxidation reactions, but the reduction by
L-xylulose reductase is not performed by a strictly NADPH-dependent enzyme as
in molds but by a strictly NADH-dependent enzyme. To our knowledge this is the
first report of an NADH-linked L-xylulose reductase. D-xylose fermentation to
ethanol with recombinant S. cerevisiae is often slow and has a low yield. One
reason is that the catabolism of these pentoses through the corresponding
fungal pathways creates an imbalance of redox cofactors. The process, although
redox neutral, requires NADPH which must be regenerated in a separate
process. To facilitate the NADPH regeneration, the recently discovered gene
GDP1 coding for a fungal NADP GAPDH was expressed in a S. cerevisiae strain
with the D-xylose pathway. Glucose 6-phosphate dehydrogenase is the main path
for NADPH regeneration, however it causes futile CO2 production and creates a
redox imbalance on the pathway for anaerobic fermentation to ethanol. The
deletion of the corresponding gene, zwfl, in combination with overexpression
of GDP1 could stimulate D-xylose fermentation with respect to rate and yield;
i.e. less CO2 and xylitol were produced. Through redox engineering a yeast
strain, which was mainly producing xylitol and CO2 from D-xylose, was
converted to a strain producing mainly ethanol.
Original language | English |
---|---|
Title of host publication | 227th ACS National Meeting |
Subtitle of host publication | Abstracts of Papers |
Publisher | American Chemical Society ACS |
Pages | U298-U299 |
Volume | 1 |
ISBN (Print) | 0-8412-3924-X |
Publication status | Published - 2004 |
Event | 227th ACS National Meeting - Anaheim, United States Duration: 28 Mar 2004 → 1 Apr 2004 |
Conference
Conference | 227th ACS National Meeting |
---|---|
Country/Territory | United States |
City | Anaheim |
Period | 28/03/04 → 1/04/04 |