Genetically engineered hairy root cultures of Hyoscyamus senecionis and H. muticus: ploidy as a promising parameter in the metabolic engineering of tropane alkaloids

Esmaeil Dehghan, Darwin W. Reed, Patrick S. Covello, Zeinab Hasanpour, Javier Palazon, Kirsi-Marja Oksman-Caldentey, Farajollah Shahriari Ahmadi

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)

Abstract

Key message: Tetraploidy improves overexpression ofh6hand scopolamine production ofH. muticus,while inH. senecionis, pmtoverexpression and elicitation can be used as effective methods for increasing tropane alkaloids. Abstract: The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.
Original languageEnglish
Pages (from-to)1615-1626
Number of pages12
JournalPlant Cell Reports
Volume36
Issue number10
DOIs
Publication statusPublished - 1 Oct 2017
MoE publication typeA1 Journal article-refereed

    Fingerprint

Keywords

  • hairy roots
  • metabolic engineering
  • methyl jasmonate
  • tetraploidy
  • tropane alkaloids

Cite this