Gypsum scaling and membrane integrity of osmotically driven membranes: The effect of membrane materials and operating conditions

Yi-Ning Wang, Eliisa Järvelä, Jing Wei, Minmin Zhang, Hanna Kyllönen, Rong Wang, Chuyang Y. Tang (Corresponding Author)

Research output: Contribution to journalArticleScientificpeer-review

31 Citations (Scopus)

Abstract

The emerging thin film composite (TFC) forward osmosis (FO) and pressure retarded osmosis (PRO) membranes generally have better separation properties compared with their cellulose triacetate (CTA) counterparts. Nevertheless, their scaling performance has been rarely reported. In the current study, the phenomenon of membrane integrity loss as a result of scaling is reported for the first time for osmotically driven membrane processes (ODMPs). The results show that the TFC membrane suffered marked flux reduction during the scaling in the active-layer-facing-feed-solution (AL-FS) orientation, accompanied with the severe damage of the membrane active layer. The membrane integrity loss is attributed to the scale formation and growth in the confined space between the membrane and the feed spacer. Compared with the CTA membrane, the TFC was more prone to scaling and membrane damage due to its unfavorable physiochemical properties (presence of Ca2 + binding sites and ridge-and-valley roughness). Although antiscalant addition was shown to be effective for scaling control in AL-FS, it was ineffective in the active-layer-facing-draw-solution orientation. The current study reveals the critical need for scaling control in ODMP processes with respect to the membrane integrity and flux stability. The results also have far-reaching implications for FO and PRO membrane design and process operation.
Original languageEnglish
Pages (from-to)1-10
JournalDesalination
Volume377
DOIs
Publication statusPublished - 2016
MoE publication typeA1 Journal article-refereed

Keywords

  • scaling
  • forward osmosis (FO)
  • thinf film composite (TFC)
  • cellulose triacetate (CTA)
  • membrane integrity

Fingerprint Dive into the research topics of 'Gypsum scaling and membrane integrity of osmotically driven membranes: The effect of membrane materials and operating conditions'. Together they form a unique fingerprint.

  • Cite this