Hermetic fiber pigtailed laser module utilizing passive device alignment on an LTCC substrate

Research output: Contribution to journalArticleScientificpeer-review

8 Citations (Scopus)

Abstract

A hermetic fiber pigtailed laser module utilizing passive device alignment on a low-temperature cofired ceramics (LTCC) substrate is demonstrated. The 3-D shape of the laminated and cofired ceramic substrate provides the necessary alignment structures, including grooves and cavities, for the laser-to-fiber coupling. When the laser diode chip and component tolerances are tight enough, the passive alignment allows high coupling efficiency realizations of multimode fiber pigtailed laser modules. The ceramic substrate is intrinsically hermetic and it opens up the possibility to use the substrate as an integrated part of the hermetic module package. In our concept hermetic sealing is produced by utilizing a Kovar frame, which is soldered to an LTCC substrate. The Kovar frame has a hole for a fiber feed-through and a hermetic glass-metal seal between fiber and frame is processed using a glass preform. The module can be used as a transmitter in a laser pulse time-of-flight distance sensor and in this application it can be overdriven by a factor of 10. This means that the peak optical power in the pulses can be several dozen watts. The laser chip allows this kind of overdriving, due to the fact that the duty factor in the operation is only 0.0% at 2 kHz pulsing frequency, which leads to an average power of several milliwatts. The simulated nominal coupling efficiency between the 210 mum times 1 mum stripe laser and the 200/220 mum step index fiber (NA = 0.22) was 0.65. The measured coupling efficiency of the hermetically sealed prototypes varied from 0.14 to 0.64, where the average was 0.39. A leak rate of 1 times 10-7 . .. 8 times 10-7 [atm times cm3/s] was measured in the helium leak tests of the final operational prototypes, when the modules were tested according to MIL-STD-883F method 1014.9 specification. The rather high leak rate is mainly due to the helium absorbed by the fiber polymer buffer layer and rubber guard tube in the pressurization process. The leak rate for the dummy modules using a buffer stripped fiber without a rubber guard tube was 3 times 10-9 . .. 1 times 10-8 [atm times cm3/s]. The maximum allowed leak rate for this size of hermetic module is 1 times 10-7 [atm times cm3/s]. The background helium level before and after the tests was less than 3 times 10-10 [atm times cm3/s]. Measurements proved that the manufacturing procedure is capable of producing hermetic fiber pigtailed laser modules.
Original languageEnglish
Pages (from-to)223-227
Number of pages5
JournalIEEE Transactions on Advanced Packaging
Volume32
Issue number1
DOIs
Publication statusPublished - 2009
MoE publication typeA1 Journal article-refereed

Fingerprint

Fiber lasers
Fibers
Substrates
Helium
Temperature
Lasers
Laser pulses
Rubber
Glass
Multimode fibers
Pressurization
Buffer layers
Seals
Semiconductor lasers
Transmitters
Specifications
Sensors
Polymers
Metals

Keywords

  • Cost-of-ownership
  • hermetic laser module
  • hybrid integration
  • low-temperature cofired ceramics (LTCC)
  • passive alignment

Cite this

@article{f8eeaf83042d42c08b87dfb53c714d8c,
title = "Hermetic fiber pigtailed laser module utilizing passive device alignment on an LTCC substrate",
abstract = "A hermetic fiber pigtailed laser module utilizing passive device alignment on a low-temperature cofired ceramics (LTCC) substrate is demonstrated. The 3-D shape of the laminated and cofired ceramic substrate provides the necessary alignment structures, including grooves and cavities, for the laser-to-fiber coupling. When the laser diode chip and component tolerances are tight enough, the passive alignment allows high coupling efficiency realizations of multimode fiber pigtailed laser modules. The ceramic substrate is intrinsically hermetic and it opens up the possibility to use the substrate as an integrated part of the hermetic module package. In our concept hermetic sealing is produced by utilizing a Kovar frame, which is soldered to an LTCC substrate. The Kovar frame has a hole for a fiber feed-through and a hermetic glass-metal seal between fiber and frame is processed using a glass preform. The module can be used as a transmitter in a laser pulse time-of-flight distance sensor and in this application it can be overdriven by a factor of 10. This means that the peak optical power in the pulses can be several dozen watts. The laser chip allows this kind of overdriving, due to the fact that the duty factor in the operation is only 0.0{\%} at 2 kHz pulsing frequency, which leads to an average power of several milliwatts. The simulated nominal coupling efficiency between the 210 mum times 1 mum stripe laser and the 200/220 mum step index fiber (NA = 0.22) was 0.65. The measured coupling efficiency of the hermetically sealed prototypes varied from 0.14 to 0.64, where the average was 0.39. A leak rate of 1 times 10-7 . .. 8 times 10-7 [atm times cm3/s] was measured in the helium leak tests of the final operational prototypes, when the modules were tested according to MIL-STD-883F method 1014.9 specification. The rather high leak rate is mainly due to the helium absorbed by the fiber polymer buffer layer and rubber guard tube in the pressurization process. The leak rate for the dummy modules using a buffer stripped fiber without a rubber guard tube was 3 times 10-9 . .. 1 times 10-8 [atm times cm3/s]. The maximum allowed leak rate for this size of hermetic module is 1 times 10-7 [atm times cm3/s]. The background helium level before and after the tests was less than 3 times 10-10 [atm times cm3/s]. Measurements proved that the manufacturing procedure is capable of producing hermetic fiber pigtailed laser modules.",
keywords = "Cost-of-ownership, hermetic laser module, hybrid integration, low-temperature cofired ceramics (LTCC), passive alignment",
author = "Kimmo Ker{\"a}nen and Jyrki Ollila and Jukka-Tapani M{\"a}kinen and Pentti Korhonen and Kari Kautio and Veli Heikkinen and Pentti Karioja",
note = "Project code: E3SU00118",
year = "2009",
doi = "10.1109/TADVP.2008.2007130",
language = "English",
volume = "32",
pages = "223--227",
journal = "IEEE Transactions on Advanced Packaging",
issn = "1521-3323",
publisher = "Institute of Electrical and Electronic Engineers IEEE",
number = "1",

}

TY - JOUR

T1 - Hermetic fiber pigtailed laser module utilizing passive device alignment on an LTCC substrate

AU - Keränen, Kimmo

AU - Ollila, Jyrki

AU - Mäkinen, Jukka-Tapani

AU - Korhonen, Pentti

AU - Kautio, Kari

AU - Heikkinen, Veli

AU - Karioja, Pentti

N1 - Project code: E3SU00118

PY - 2009

Y1 - 2009

N2 - A hermetic fiber pigtailed laser module utilizing passive device alignment on a low-temperature cofired ceramics (LTCC) substrate is demonstrated. The 3-D shape of the laminated and cofired ceramic substrate provides the necessary alignment structures, including grooves and cavities, for the laser-to-fiber coupling. When the laser diode chip and component tolerances are tight enough, the passive alignment allows high coupling efficiency realizations of multimode fiber pigtailed laser modules. The ceramic substrate is intrinsically hermetic and it opens up the possibility to use the substrate as an integrated part of the hermetic module package. In our concept hermetic sealing is produced by utilizing a Kovar frame, which is soldered to an LTCC substrate. The Kovar frame has a hole for a fiber feed-through and a hermetic glass-metal seal between fiber and frame is processed using a glass preform. The module can be used as a transmitter in a laser pulse time-of-flight distance sensor and in this application it can be overdriven by a factor of 10. This means that the peak optical power in the pulses can be several dozen watts. The laser chip allows this kind of overdriving, due to the fact that the duty factor in the operation is only 0.0% at 2 kHz pulsing frequency, which leads to an average power of several milliwatts. The simulated nominal coupling efficiency between the 210 mum times 1 mum stripe laser and the 200/220 mum step index fiber (NA = 0.22) was 0.65. The measured coupling efficiency of the hermetically sealed prototypes varied from 0.14 to 0.64, where the average was 0.39. A leak rate of 1 times 10-7 . .. 8 times 10-7 [atm times cm3/s] was measured in the helium leak tests of the final operational prototypes, when the modules were tested according to MIL-STD-883F method 1014.9 specification. The rather high leak rate is mainly due to the helium absorbed by the fiber polymer buffer layer and rubber guard tube in the pressurization process. The leak rate for the dummy modules using a buffer stripped fiber without a rubber guard tube was 3 times 10-9 . .. 1 times 10-8 [atm times cm3/s]. The maximum allowed leak rate for this size of hermetic module is 1 times 10-7 [atm times cm3/s]. The background helium level before and after the tests was less than 3 times 10-10 [atm times cm3/s]. Measurements proved that the manufacturing procedure is capable of producing hermetic fiber pigtailed laser modules.

AB - A hermetic fiber pigtailed laser module utilizing passive device alignment on a low-temperature cofired ceramics (LTCC) substrate is demonstrated. The 3-D shape of the laminated and cofired ceramic substrate provides the necessary alignment structures, including grooves and cavities, for the laser-to-fiber coupling. When the laser diode chip and component tolerances are tight enough, the passive alignment allows high coupling efficiency realizations of multimode fiber pigtailed laser modules. The ceramic substrate is intrinsically hermetic and it opens up the possibility to use the substrate as an integrated part of the hermetic module package. In our concept hermetic sealing is produced by utilizing a Kovar frame, which is soldered to an LTCC substrate. The Kovar frame has a hole for a fiber feed-through and a hermetic glass-metal seal between fiber and frame is processed using a glass preform. The module can be used as a transmitter in a laser pulse time-of-flight distance sensor and in this application it can be overdriven by a factor of 10. This means that the peak optical power in the pulses can be several dozen watts. The laser chip allows this kind of overdriving, due to the fact that the duty factor in the operation is only 0.0% at 2 kHz pulsing frequency, which leads to an average power of several milliwatts. The simulated nominal coupling efficiency between the 210 mum times 1 mum stripe laser and the 200/220 mum step index fiber (NA = 0.22) was 0.65. The measured coupling efficiency of the hermetically sealed prototypes varied from 0.14 to 0.64, where the average was 0.39. A leak rate of 1 times 10-7 . .. 8 times 10-7 [atm times cm3/s] was measured in the helium leak tests of the final operational prototypes, when the modules were tested according to MIL-STD-883F method 1014.9 specification. The rather high leak rate is mainly due to the helium absorbed by the fiber polymer buffer layer and rubber guard tube in the pressurization process. The leak rate for the dummy modules using a buffer stripped fiber without a rubber guard tube was 3 times 10-9 . .. 1 times 10-8 [atm times cm3/s]. The maximum allowed leak rate for this size of hermetic module is 1 times 10-7 [atm times cm3/s]. The background helium level before and after the tests was less than 3 times 10-10 [atm times cm3/s]. Measurements proved that the manufacturing procedure is capable of producing hermetic fiber pigtailed laser modules.

KW - Cost-of-ownership

KW - hermetic laser module

KW - hybrid integration

KW - low-temperature cofired ceramics (LTCC)

KW - passive alignment

U2 - 10.1109/TADVP.2008.2007130

DO - 10.1109/TADVP.2008.2007130

M3 - Article

VL - 32

SP - 223

EP - 227

JO - IEEE Transactions on Advanced Packaging

JF - IEEE Transactions on Advanced Packaging

SN - 1521-3323

IS - 1

ER -