Abstract
The number of embedded systems capable for wireless machine-to-machine service communication has continuously been increasing in recent years. In these kinds of dynamic ecosystems, the problems related to complexity and heterogeneity seriously challenges interoperability. As a contribution to this research, the small world paradigm from social sciences is being applied in a wireless networks context. A novel hierarchical networking concept, related routing algorithm and network optimization solutions are created to enable solving these problems. Logical short cuts are established between neighboring overlay nodes in order to avoid global flooding in distant route searches. In addition, physical short cuts may be created to remove the bottlenecks from the communication paths. The concept has been evaluated by graph theoretical analysis of the Hi-Search algorithm, simulation of the network optimization step and service discovery procedure. The evaluation results indicate that the algorithm with network optimization functions is able to lower the search delays, make the physical routes shorter and also improve throughput. In addition, solving the complexity and heterogeneity problems is made possible by localizing route search and abstracting communication to two hierarchical routing layers.
Original language | English |
---|---|
Pages (from-to) | 126-140 |
Number of pages | 15 |
Journal | International Journal On Advances in Internet Technology |
Volume | 5 |
Issue number | 4-5 |
Publication status | Published - 2012 |
MoE publication type | A1 Journal article-refereed |