TY - JOUR
T1 - High-Throughput Processing of Nanographite–Nanocellulose-Based Electrodes for Flexible Energy Devices
AU - Koppolu, Rajesh
AU - Blomquist, Nicklas
AU - Dahlström, Christina
AU - Toivakka, Martti
PY - 2020/6/17
Y1 - 2020/6/17
N2 - The current work aims at understanding factors that influence the processability of nanographite–nanocellulose suspensions onto flexible substrates for production of conductive electrodes. A custom-built slot-die was used in a continuous roll-to-roll process to coat the nanomaterial suspension onto substrates with varying surface smoothness, thickness, pore structure, and wet strength. The influence of a carboxymethyl cellulose (CMC) additive on suspension rheology, water release properties, and coating quality was probed. CMC addition reduced the suspension yield stress by 2 orders of magnitude and the average pore diameter of the coated electrodes by 70%. Sheet resistances of 5–9 Ω sq–1 were obtained for the conductive coatings with a coat weight of 12–24 g m–2. Calendering reduced the sheet resistance to 1–3 Ω sq–1 and resistivity to as low as 12 μΩ m. The coated electrodes were used to demonstrate a metal-free aqueous-electrolyte supercapacitor with a specific capacitance of 63 F g–1. The results increase our understanding of continuous processing of nanographite–nanocellulose suspensions into electrodes, with potential uses in flexible, lightweight, and environmentally friendly energy devices.
AB - The current work aims at understanding factors that influence the processability of nanographite–nanocellulose suspensions onto flexible substrates for production of conductive electrodes. A custom-built slot-die was used in a continuous roll-to-roll process to coat the nanomaterial suspension onto substrates with varying surface smoothness, thickness, pore structure, and wet strength. The influence of a carboxymethyl cellulose (CMC) additive on suspension rheology, water release properties, and coating quality was probed. CMC addition reduced the suspension yield stress by 2 orders of magnitude and the average pore diameter of the coated electrodes by 70%. Sheet resistances of 5–9 Ω sq–1 were obtained for the conductive coatings with a coat weight of 12–24 g m–2. Calendering reduced the sheet resistance to 1–3 Ω sq–1 and resistivity to as low as 12 μΩ m. The coated electrodes were used to demonstrate a metal-free aqueous-electrolyte supercapacitor with a specific capacitance of 63 F g–1. The results increase our understanding of continuous processing of nanographite–nanocellulose suspensions into electrodes, with potential uses in flexible, lightweight, and environmentally friendly energy devices.
UR - http://www.scopus.com/inward/record.url?scp=85090028369&partnerID=8YFLogxK
U2 - 10.1021/acs.iecr.0c01112
DO - 10.1021/acs.iecr.0c01112
M3 - Article
SN - 0888-5885
VL - 59
SP - 11232
EP - 11240
JO - Industrial & Engineering Chemistry Research
JF - Industrial & Engineering Chemistry Research
IS - 24
ER -