Human assigned vs. machine created: Links between patents and scholarly publications

    Research output: Contribution to conferenceConference AbstractScientific

    Abstract

    To measure knowledge flows between scholarly literature and patents, studies have used a several approaches, such as keyword search based count of science publications and patenting in a technology with an expectation of linearity of innovation, patents citing publications or vice versa, or author-inventor co-occurrences. Patent citations, specifically non-patent references has often been seen as a proxy of for the "science-dependence" or "science-base" of a technology, although this has been critiqued as an over simplification. Another avenue to classify patents and publications would be to rely on machine learning, specifically unsupervised learning. In this study, we analyse the relationship between publication and patents by looking at the intersection of human assigned and machine learned linkages between science and patents. We use a macro level approach focusing on the whole science publication and patents from one country.
    Original languageEnglish
    Publication statusPublished - 2017
    MoE publication typeNot Eligible
    Event7th Global TechMining Conference, GTM 2017 - Atlanta, United States
    Duration: 9 Oct 2017 → …

    Conference

    Conference7th Global TechMining Conference, GTM 2017
    Abbreviated titleGTM 2017
    Country/TerritoryUnited States
    CityAtlanta
    Period9/10/17 → …

    Fingerprint

    Dive into the research topics of 'Human assigned vs. machine created: Links between patents and scholarly publications'. Together they form a unique fingerprint.

    Cite this