IEA technology network cooperation

Fuel and technology alternatives for buses: Overall energy efficiency and emissions

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)

Abstract

In 2009-2011, a comprehensive project on urban buses was carried out in cooperation with IEA's Implementing Agreements on Alternative Motor Fuels and Bioenergy, with input from additional IEA Implementing Agreements. The objective of the project was to generate unbiased and solid data for use by policy- and decision-makers responsible for public transport using buses. The project comprised four major parts: (1) a well-to-tank (WTT) assessment of alternative fuel pathways, (2) an assessment of bus end-use (tank-to-wheel, TTW) performance, (3) combining WTT and TTW data into well-to-wheel (WTW) data and (4) a cost assessment, including indirect as well as direct costs.
Experts at Argonne National Laboratory, Natural Resources Canada and VTT worked on the WTT part. In the TTW part, Environment Canada and VTT generated emission and fuel consumption data by running 21 different buses on chassis dynamometers, generating data for some 180 combinations of vehicle, fuel and driving cycle. The fuels covered included diesel, synthetic diesel, various types of biodiesel fuels, additive treated ethanol, methane and DME. Six different hybrid vehicles were included in the vehicle matrix. The TTW work was topped off by on-road measurements (AVL MTC) as well as some engine dynamometer work (von Thünen Institute). Over the last 15 years, tightening emission regulations and improved engine and exhaust after-treatment technology have reduced regulated emissions by a factor of 10:1 and particulate numbers with a factor of 100:1. Hybridization or light-weighting reduce fuel consumption 20 - 30%, but otherwise the improvements in fuel efficiency have not been so spectacular. The driving cycle affects regulated emissions and fuel consumption by a factor of 5:1. The fuel effects are at maximum 2.5:1 for regulated emissions (particulates), but as high as 100:1 for WTW greenhouse emissions. WTW energy use varies with a factor on 2.5:1.
Original languageEnglish
Pages (from-to)513-533
Number of pages20
JournalSAE International Journal of Commercial Vehicles
Volume5
Issue number2
DOIs
Publication statusPublished - 2012
MoE publication typeA1 Journal article-refereed

Fingerprint

Energy efficiency
Wheels
Fuel consumption
Dynamometers
Engines
Fuel additives
Particulate emissions
Alternative fuels
Chassis
Greenhouses
Hybrid vehicles
Natural resources
Biodiesel
Costs
Methane
Ethanol

Cite this

@article{9a1c47e2a03f4c35b3c2082ca6843320,
title = "IEA technology network cooperation: Fuel and technology alternatives for buses: Overall energy efficiency and emissions",
abstract = "In 2009-2011, a comprehensive project on urban buses was carried out in cooperation with IEA's Implementing Agreements on Alternative Motor Fuels and Bioenergy, with input from additional IEA Implementing Agreements. The objective of the project was to generate unbiased and solid data for use by policy- and decision-makers responsible for public transport using buses. The project comprised four major parts: (1) a well-to-tank (WTT) assessment of alternative fuel pathways, (2) an assessment of bus end-use (tank-to-wheel, TTW) performance, (3) combining WTT and TTW data into well-to-wheel (WTW) data and (4) a cost assessment, including indirect as well as direct costs.Experts at Argonne National Laboratory, Natural Resources Canada and VTT worked on the WTT part. In the TTW part, Environment Canada and VTT generated emission and fuel consumption data by running 21 different buses on chassis dynamometers, generating data for some 180 combinations of vehicle, fuel and driving cycle. The fuels covered included diesel, synthetic diesel, various types of biodiesel fuels, additive treated ethanol, methane and DME. Six different hybrid vehicles were included in the vehicle matrix. The TTW work was topped off by on-road measurements (AVL MTC) as well as some engine dynamometer work (von Th{\"u}nen Institute). Over the last 15 years, tightening emission regulations and improved engine and exhaust after-treatment technology have reduced regulated emissions by a factor of 10:1 and particulate numbers with a factor of 100:1. Hybridization or light-weighting reduce fuel consumption 20 - 30{\%}, but otherwise the improvements in fuel efficiency have not been so spectacular. The driving cycle affects regulated emissions and fuel consumption by a factor of 5:1. The fuel effects are at maximum 2.5:1 for regulated emissions (particulates), but as high as 100:1 for WTW greenhouse emissions. WTW energy use varies with a factor on 2.5:1.",
author = "Kati Koponen and Nils-Olof Nylund",
year = "2012",
doi = "10.4271/2012-01-1981",
language = "English",
volume = "5",
pages = "513--533",
journal = "SAE International Journal of Commercial Vehicles",
issn = "1946-391X",
publisher = "Society of Automotive Engineers SAE",
number = "2",

}

TY - JOUR

T1 - IEA technology network cooperation

T2 - Fuel and technology alternatives for buses: Overall energy efficiency and emissions

AU - Koponen, Kati

AU - Nylund, Nils-Olof

PY - 2012

Y1 - 2012

N2 - In 2009-2011, a comprehensive project on urban buses was carried out in cooperation with IEA's Implementing Agreements on Alternative Motor Fuels and Bioenergy, with input from additional IEA Implementing Agreements. The objective of the project was to generate unbiased and solid data for use by policy- and decision-makers responsible for public transport using buses. The project comprised four major parts: (1) a well-to-tank (WTT) assessment of alternative fuel pathways, (2) an assessment of bus end-use (tank-to-wheel, TTW) performance, (3) combining WTT and TTW data into well-to-wheel (WTW) data and (4) a cost assessment, including indirect as well as direct costs.Experts at Argonne National Laboratory, Natural Resources Canada and VTT worked on the WTT part. In the TTW part, Environment Canada and VTT generated emission and fuel consumption data by running 21 different buses on chassis dynamometers, generating data for some 180 combinations of vehicle, fuel and driving cycle. The fuels covered included diesel, synthetic diesel, various types of biodiesel fuels, additive treated ethanol, methane and DME. Six different hybrid vehicles were included in the vehicle matrix. The TTW work was topped off by on-road measurements (AVL MTC) as well as some engine dynamometer work (von Thünen Institute). Over the last 15 years, tightening emission regulations and improved engine and exhaust after-treatment technology have reduced regulated emissions by a factor of 10:1 and particulate numbers with a factor of 100:1. Hybridization or light-weighting reduce fuel consumption 20 - 30%, but otherwise the improvements in fuel efficiency have not been so spectacular. The driving cycle affects regulated emissions and fuel consumption by a factor of 5:1. The fuel effects are at maximum 2.5:1 for regulated emissions (particulates), but as high as 100:1 for WTW greenhouse emissions. WTW energy use varies with a factor on 2.5:1.

AB - In 2009-2011, a comprehensive project on urban buses was carried out in cooperation with IEA's Implementing Agreements on Alternative Motor Fuels and Bioenergy, with input from additional IEA Implementing Agreements. The objective of the project was to generate unbiased and solid data for use by policy- and decision-makers responsible for public transport using buses. The project comprised four major parts: (1) a well-to-tank (WTT) assessment of alternative fuel pathways, (2) an assessment of bus end-use (tank-to-wheel, TTW) performance, (3) combining WTT and TTW data into well-to-wheel (WTW) data and (4) a cost assessment, including indirect as well as direct costs.Experts at Argonne National Laboratory, Natural Resources Canada and VTT worked on the WTT part. In the TTW part, Environment Canada and VTT generated emission and fuel consumption data by running 21 different buses on chassis dynamometers, generating data for some 180 combinations of vehicle, fuel and driving cycle. The fuels covered included diesel, synthetic diesel, various types of biodiesel fuels, additive treated ethanol, methane and DME. Six different hybrid vehicles were included in the vehicle matrix. The TTW work was topped off by on-road measurements (AVL MTC) as well as some engine dynamometer work (von Thünen Institute). Over the last 15 years, tightening emission regulations and improved engine and exhaust after-treatment technology have reduced regulated emissions by a factor of 10:1 and particulate numbers with a factor of 100:1. Hybridization or light-weighting reduce fuel consumption 20 - 30%, but otherwise the improvements in fuel efficiency have not been so spectacular. The driving cycle affects regulated emissions and fuel consumption by a factor of 5:1. The fuel effects are at maximum 2.5:1 for regulated emissions (particulates), but as high as 100:1 for WTW greenhouse emissions. WTW energy use varies with a factor on 2.5:1.

U2 - 10.4271/2012-01-1981

DO - 10.4271/2012-01-1981

M3 - Article

VL - 5

SP - 513

EP - 533

JO - SAE International Journal of Commercial Vehicles

JF - SAE International Journal of Commercial Vehicles

SN - 1946-391X

IS - 2

ER -