Impact Of Climate Change To The Total And Peak Energy Demands Of A Northern Finnish Building By 2050

J. Pulkkinen, J. N. Louis*, E. Pongracz

*Corresponding author for this work

Research output: Contribution to journalArticle in a proceedings journalScientificpeer-review

Abstract

Due to climate change, global average outdoor temperatures are expected to further increase, modifying the energy demand of the buildings from today. As new buildings are constructed to last, the impact of climate change should be taken into account during the design phase. The objective of this study is to investigate the changes in total and peak energy demands in buildings having different levels of thermal insulation, to explore if the impacts of climate change are similar to all selected building types by 2050. The impact of climate change to the weather data is gathered from different climate change projections to achieve a comprehensive analysis of the possible future directions. The new weather files are created using ‘morphing’ method and using meteorological test reference year for building simulation and measured weather data for constructing the future weather files. The results indicate that the energy demand will decrease by 6-12% in passive building types by 2050, with heating demand decreasing 6-13% and by starting to have cooling demand in A1B, A2 and RCP8.5 scenarios for passive building. The scenarios with higher projections for temperature increase also have larger decreases in total energy demands indicating that the starting of having cooling demand does not overcome the decrease in heating demand. Moreover, the peak demand for heating is projected to decrease in the future but, at the same time, peak cooling demand starts to occur, which may need to be considered in the future energy system constraints.

Original languageEnglish
Article number0602
Number of pages5
JournalEnergy Proceedings
Volume4
Issue numberPart III
DOIs
Publication statusPublished - 2019
MoE publication typeA4 Article in a conference publication
Event11th International Conference on Applied Energy, ICAE 2019 - Västerås, Sweden
Duration: 12 Aug 201915 Aug 2019

Funding

The authors declare no conflict of interest. The work was conducted under the Smart Energy Networks 2050-SEN2050 project funded by Academy of Finland (Decision 287748).

Keywords

  • climate change
  • cooling demand
  • energy demand
  • heating demand
  • North Finland
  • peak capacity

Fingerprint

Dive into the research topics of 'Impact Of Climate Change To The Total And Peak Energy Demands Of A Northern Finnish Building By 2050'. Together they form a unique fingerprint.

Cite this