Abstract
Recent studies have suggested that blocky mechanical pulp fines (CTMP fines) and fibrillar fines (SMC fines) have a negative impact on biocomposite modulus of rupture (MoR) in compression molded biocomposites. In addition, it was suggested that CTMP fines also have a negative impact on biocomposite modulus of elasticity (MoE). This study investigated whether these findings transfer to other types of cellulose fines material and injection molding. The effect of 'V-fines' addition to sawdust-and TMP-based biocomposites was analyzed, with respect to fines concentration, dispersing agent, and compatibilizers. The results indicated that the addition of 'V-fines' increased the stiffness (MoE) of all the analyzed compositions, while reducing the elongation at break. The addition of 'V-fines' reduced the tensile and flexural strength of TMP biocomposites, while it was largely unaffected for sawdust biocomposites. Flexural strength for neat 'V-fines' composites showed an increase that was proportional to the remaining pulp fibers composition. The addition of a dispersant agent to the 'V-fines' increased tensile strength, suggesting that an increased dispersion of the 'V-fines' can be achieved and is beneficial to the composite. The effects of the analyzed compatibilizer (polyethyleneoxide) was negligible, except for a small indication of increased MoE for fines / sawdust biocomposites.
Original language | English |
---|---|
Pages (from-to) | 6561-6575 |
Number of pages | 15 |
Journal | BioResources |
Volume | 15 |
Issue number | 3 |
DOIs | |
Publication status | Published - Aug 2020 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Composites
- Fines material
- Mechanical pulp manufacturing
- Pulp fines
- Short fiber composites
- Wood polymer composites
- WPC