Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW

D. Borodin, S. Brezinsek, I. Borodkina, J. Romazanov, D. Matveev, A. Kirschner, A. Lasa, K. Nordlund, C. Björkas, M. Airila, J. Miettunen, M. Groth, M. Firdaouss, JET Contributors

    Research output: Contribution to journalArticleScientificpeer-review

    9 Citations (Scopus)

    Abstract

    Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte-Carlo modelling (ERO code [18]) is a key for the interpretation of the observations in the vicinity of the shaped solid Be limiter. The plasma parameter variation (density scan) in limiter regime has provided a useful material for the simulation benchmark. The improved background plasma parameters input, the new analytical expression for particle tracking in the sheath region and implementation of the BeD release into ERO has helped to clarify some deviations between modelling and experiments encountered in the previous studies [4,5]. Reproducing the observations provides additional confidence in our ‘ERO-min’ fit for the physical sputtering yields for the plasma-wetted areas based on simulated data.

    Original languageEnglish
    Pages (from-to)604-609
    Number of pages6
    JournalNuclear Materials and Energy
    Volume9
    DOIs
    Publication statusPublished - 1 Dec 2016
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    Beryllium
    beryllium
    Limiters
    Spectroscopy
    Plasmas
    spectroscopy
    Sputtering
    sputtering
    Beam plasma interactions
    sheaths
    surface reactions
    confidence
    deviation
    simulation
    Experiments

    Keywords

    • Beryllium
    • Erosion
    • JET ITER-like wall
    • Spectroscopy

    Cite this

    Borodin, D., Brezinsek, S., Borodkina, I., Romazanov, J., Matveev, D., Kirschner, A., ... JET Contributors (2016). Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW. Nuclear Materials and Energy, 9, 604-609. https://doi.org/10.1016/j.nme.2016.08.013
    Borodin, D. ; Brezinsek, S. ; Borodkina, I. ; Romazanov, J. ; Matveev, D. ; Kirschner, A. ; Lasa, A. ; Nordlund, K. ; Björkas, C. ; Airila, M. ; Miettunen, J. ; Groth, M. ; Firdaouss, M. ; JET Contributors. / Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW. In: Nuclear Materials and Energy. 2016 ; Vol. 9. pp. 604-609.
    @article{fc0e1a3d38c8441ab94bbde299d63157,
    title = "Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW",
    abstract = "Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte-Carlo modelling (ERO code [18]) is a key for the interpretation of the observations in the vicinity of the shaped solid Be limiter. The plasma parameter variation (density scan) in limiter regime has provided a useful material for the simulation benchmark. The improved background plasma parameters input, the new analytical expression for particle tracking in the sheath region and implementation of the BeD release into ERO has helped to clarify some deviations between modelling and experiments encountered in the previous studies [4,5]. Reproducing the observations provides additional confidence in our ‘ERO-min’ fit for the physical sputtering yields for the plasma-wetted areas based on simulated data.",
    keywords = "Beryllium, Erosion, JET ITER-like wall, Spectroscopy",
    author = "D. Borodin and S. Brezinsek and I. Borodkina and J. Romazanov and D. Matveev and A. Kirschner and A. Lasa and K. Nordlund and C. Bj{\"o}rkas and M. Airila and J. Miettunen and M. Groth and M. Firdaouss and {JET Contributors}",
    year = "2016",
    month = "12",
    day = "1",
    doi = "10.1016/j.nme.2016.08.013",
    language = "English",
    volume = "9",
    pages = "604--609",
    journal = "Nuclear Materials and Energy",
    issn = "2352-1791",
    publisher = "Elsevier",

    }

    Borodin, D, Brezinsek, S, Borodkina, I, Romazanov, J, Matveev, D, Kirschner, A, Lasa, A, Nordlund, K, Björkas, C, Airila, M, Miettunen, J, Groth, M, Firdaouss, M & JET Contributors 2016, 'Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW', Nuclear Materials and Energy, vol. 9, pp. 604-609. https://doi.org/10.1016/j.nme.2016.08.013

    Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW. / Borodin, D.; Brezinsek, S.; Borodkina, I.; Romazanov, J.; Matveev, D.; Kirschner, A.; Lasa, A.; Nordlund, K.; Björkas, C.; Airila, M.; Miettunen, J.; Groth, M.; Firdaouss, M.; JET Contributors.

    In: Nuclear Materials and Energy, Vol. 9, 01.12.2016, p. 604-609.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW

    AU - Borodin, D.

    AU - Brezinsek, S.

    AU - Borodkina, I.

    AU - Romazanov, J.

    AU - Matveev, D.

    AU - Kirschner, A.

    AU - Lasa, A.

    AU - Nordlund, K.

    AU - Björkas, C.

    AU - Airila, M.

    AU - Miettunen, J.

    AU - Groth, M.

    AU - Firdaouss, M.

    AU - JET Contributors

    PY - 2016/12/1

    Y1 - 2016/12/1

    N2 - Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte-Carlo modelling (ERO code [18]) is a key for the interpretation of the observations in the vicinity of the shaped solid Be limiter. The plasma parameter variation (density scan) in limiter regime has provided a useful material for the simulation benchmark. The improved background plasma parameters input, the new analytical expression for particle tracking in the sheath region and implementation of the BeD release into ERO has helped to clarify some deviations between modelling and experiments encountered in the previous studies [4,5]. Reproducing the observations provides additional confidence in our ‘ERO-min’ fit for the physical sputtering yields for the plasma-wetted areas based on simulated data.

    AB - Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte-Carlo modelling (ERO code [18]) is a key for the interpretation of the observations in the vicinity of the shaped solid Be limiter. The plasma parameter variation (density scan) in limiter regime has provided a useful material for the simulation benchmark. The improved background plasma parameters input, the new analytical expression for particle tracking in the sheath region and implementation of the BeD release into ERO has helped to clarify some deviations between modelling and experiments encountered in the previous studies [4,5]. Reproducing the observations provides additional confidence in our ‘ERO-min’ fit for the physical sputtering yields for the plasma-wetted areas based on simulated data.

    KW - Beryllium

    KW - Erosion

    KW - JET ITER-like wall

    KW - Spectroscopy

    UR - http://www.scopus.com/inward/record.url?scp=85006043011&partnerID=8YFLogxK

    U2 - 10.1016/j.nme.2016.08.013

    DO - 10.1016/j.nme.2016.08.013

    M3 - Article

    AN - SCOPUS:85006043011

    VL - 9

    SP - 604

    EP - 609

    JO - Nuclear Materials and Energy

    JF - Nuclear Materials and Energy

    SN - 2352-1791

    ER -