Improving content-based target and change detection in ALOS PALSAR images with efficient feature selection

Matthieu Molinier, Ville Viitaniemi, Markus Koskela, Jorma Laaksonen, Yrjö Rauste, Anne Lönnqvist, Tuomas Häme

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review


Self-Organising Maps (SOMs) have been successfully applied to content-based image retrieval (CBIR). In this study, we investigate the potential of PicSOM, an image database browsing system, applied to quad-polarised ALOS PALSAR images. Databases of small images were artificially created, either from a single satellite image for object detection, or two satellite images when considering change detection. Polarimetric features were extracted from the images to allow image indexing. By querying the databases, it was possible to detect target classes, as well as changes between the two images. Results open a full range of applications, from structure detection to change detection, to be embedded in a same operative system. The framework may be particularly suitable for long-term monitoring of strategic sites.
Original languageEnglish
Title of host publicationProceedings of ESA-EUSC Symposium 2008 – WPP-278
Number of pages8
Publication statusPublished - 2008
MoE publication typeNot Eligible



  • content-based information retrieval
  • self-organising maps
  • high resolution satellite images
  • polarimetric spaceborne SAR
  • change detection

Cite this