Influence of the elementary mixing scale on HVOF-sprayed coatings derived from nanostructured aluminosilicate/mullite feedstock

J. Leivo (Corresponding Author), Tommi Varis, Erja Turunen, M. Vippola, K. Rissa, Ulla Kanerva, J. Silvonen, T.A. Mäntylä

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

Aluminosilicate/mullite coatings were prepared from nanosized sources of aluminium and silicon by means of a high velocity oxy-fuel thermal spray process. X-ray diffraction, analytical electron microscopy, differential thermal analysis and Fourier transform infrared spectroscopy were used to characterize the phase composition, elementary distribution, and microstructure in the feedstock and in the coatings. It was revealed that the chemical environment of the alumina component, as well as the inherent elementary distribution in the nanoparticulate aluminosilicate feedstock, showed the greatest influence on the microstructure and the crystallization of nanosized ceramic phases in the sprayed coatings. A uniform distribution of alumina and silica in a short-range ordered monophasic-like nanostructure was the most appropriate physico-chemical conditions of the feedstock to achieve nanosized crystallites of mullite in a monolithic-like aluminosilicate coating. In turn, when using diphasic feedstock, clearly heterogeneous but nanostructured coatings with a good abrasion resistance were obtained. The agglomerated and heat-treated powders were considered as the most suitable type of feedstock for providing nanostructured aluminosilicate coatings.
Original languageEnglish
Pages (from-to)335-344
JournalSurface and Coatings Technology
Volume203
Issue number3-4
DOIs
Publication statusPublished - 2008
MoE publication typeA1 Journal article-refereed

Keywords

  • aluminosilicate
  • crystallization
  • high velocity oxy-fuel
  • HVOF
  • mullite
  • nanostructured coatings
  • thermal spraying
  • ProperPart

Fingerprint Dive into the research topics of 'Influence of the elementary mixing scale on HVOF-sprayed coatings derived from nanostructured aluminosilicate/mullite feedstock'. Together they form a unique fingerprint.

  • Cite this