Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions

Closed system experiments

Emmi Myllykylä, Kaija Ollila

Research output: Book/ReportReportProfessional

Abstract

The aim of these experiments is to investigate the potential reduction of U(VI) carbonate and hydroxide complexes by aqueous Fe(II). This reduction phenomenon could be important under the disposal conditions of spent fuel. If groundwater enters the copper/iron canister, alpha radiolysis of the water may locally induce oxidizing conditions on the surface of UO2 fuel, leading to the dissolution of UO2 as more soluble U(VI) species. A potential reducing agent in the intruding water is Fe(II)(aq) from anaerobic corrosion of the copper/iron canister. The reduction of U(VI) to U(IV) would substantially decrease the solubility of U as well as co-precipitate other actinides and radionuclides. The interaction experiments were conducted in 0.01 M NaCl and 0.002 M NaHCO3 solutions using an initial uranium concentration of either 8.4 • 10-8 or 4.2 • 10-7 mol/L with an initial Fe(II) concentration of 1.8 • 10-6  in the NaCl solutions and 1.3 • 10-6 mol/L in the NaHCO3 solutions. Only after an equilibration period for U(VI) complexation was Fe(II) added to the solutions. The reaction times varied from 1 week to 5 months. For extra protection against O2, even inside a glove-box (N2 atmosphere), the plastic reaction vessels were closed in metallic containers. The concentrations of U, FeTOT and Fe(II) were analysed as a function of time for unfiltered, micro- and ultrafiltered samples. In addition, the precipitate on the ultrafilters was analysed with ESEM-EDS. The evolution of pH and Eh values was measured. The oxidation state of U in solution was preliminarily analysed for chosen periods. The results of the tests in 0.01 M NaCl showed an initial rapid decrease in U concentration after the addition of Fe(II) to the solution. The U found on test vessel walls at the end of the reaction periods, as well as the ESEM-EDS analyses of the filtered precipitates from the test solutions, showed that precipitation of U had occurred. The oxidation state analyses showed the presence of U(IV) in the solutions after 3 and 6 weeks’ reaction time. These results suggest that the reduction of U(VI) by Fe(II) occurred in NaCl solution. The observed change in U concentration in 0.002 M NaHCO3 solution was small and very slow. Uranium(IV) was also found in solution in this test, showing that some reduction occurred in spite of the stabilising effect of carbonates on U(VI) solutions.
Original languageEnglish
Place of PublicationOlkiluoto, Eurajoki
PublisherPosiva
Number of pages35
Publication statusPublished - 2011
MoE publication typeD4 Published development or research report or study

Publication series

NameWorking Report
PublisherPosiva Oy
No.2011-06

Fingerprint

anoxic conditions
aqueous solution
experiment
uranium
vessel
copper
carbonate
oxidation
iron
actinide
complexation
hydroxide
radionuclide
corrosion
solubility
plastic
dissolution
water
groundwater
test

Keywords

  • Uranium
  • reduction
  • iron
  • Fe2+(aq)
  • anoxic conditions
  • spent fuel

Cite this

Myllykylä, Emmi ; Ollila, Kaija. / Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions : Closed system experiments. Olkiluoto, Eurajoki : Posiva , 2011. 35 p. (Working Report; No. 2011-06).
@book{7fca23b0f0384db1803eb4766efc5070,
title = "Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions: Closed system experiments",
abstract = "The aim of these experiments is to investigate the potential reduction of U(VI) carbonate and hydroxide complexes by aqueous Fe(II). This reduction phenomenon could be important under the disposal conditions of spent fuel. If groundwater enters the copper/iron canister, alpha radiolysis of the water may locally induce oxidizing conditions on the surface of UO2 fuel, leading to the dissolution of UO2 as more soluble U(VI) species. A potential reducing agent in the intruding water is Fe(II)(aq) from anaerobic corrosion of the copper/iron canister. The reduction of U(VI) to U(IV) would substantially decrease the solubility of U as well as co-precipitate other actinides and radionuclides. The interaction experiments were conducted in 0.01 M NaCl and 0.002 M NaHCO3 solutions using an initial uranium concentration of either 8.4 • 10-8 or 4.2 • 10-7 mol/L with an initial Fe(II) concentration of 1.8 • 10-6  in the NaCl solutions and 1.3 • 10-6 mol/L in the NaHCO3 solutions. Only after an equilibration period for U(VI) complexation was Fe(II) added to the solutions. The reaction times varied from 1 week to 5 months. For extra protection against O2, even inside a glove-box (N2 atmosphere), the plastic reaction vessels were closed in metallic containers. The concentrations of U, FeTOT and Fe(II) were analysed as a function of time for unfiltered, micro- and ultrafiltered samples. In addition, the precipitate on the ultrafilters was analysed with ESEM-EDS. The evolution of pH and Eh values was measured. The oxidation state of U in solution was preliminarily analysed for chosen periods. The results of the tests in 0.01 M NaCl showed an initial rapid decrease in U concentration after the addition of Fe(II) to the solution. The U found on test vessel walls at the end of the reaction periods, as well as the ESEM-EDS analyses of the filtered precipitates from the test solutions, showed that precipitation of U had occurred. The oxidation state analyses showed the presence of U(IV) in the solutions after 3 and 6 weeks’ reaction time. These results suggest that the reduction of U(VI) by Fe(II) occurred in NaCl solution. The observed change in U concentration in 0.002 M NaHCO3 solution was small and very slow. Uranium(IV) was also found in solution in this test, showing that some reduction occurred in spite of the stabilising effect of carbonates on U(VI) solutions.",
keywords = "Uranium, reduction, iron, Fe2+(aq), anoxic conditions, spent fuel",
author = "Emmi Myllykyl{\"a} and Kaija Ollila",
year = "2011",
language = "English",
series = "Working Report",
publisher = "Posiva",
number = "2011-06",
address = "Finland",

}

Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions : Closed system experiments. / Myllykylä, Emmi; Ollila, Kaija.

Olkiluoto, Eurajoki : Posiva , 2011. 35 p. (Working Report; No. 2011-06).

Research output: Book/ReportReportProfessional

TY - BOOK

T1 - Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions

T2 - Closed system experiments

AU - Myllykylä, Emmi

AU - Ollila, Kaija

PY - 2011

Y1 - 2011

N2 - The aim of these experiments is to investigate the potential reduction of U(VI) carbonate and hydroxide complexes by aqueous Fe(II). This reduction phenomenon could be important under the disposal conditions of spent fuel. If groundwater enters the copper/iron canister, alpha radiolysis of the water may locally induce oxidizing conditions on the surface of UO2 fuel, leading to the dissolution of UO2 as more soluble U(VI) species. A potential reducing agent in the intruding water is Fe(II)(aq) from anaerobic corrosion of the copper/iron canister. The reduction of U(VI) to U(IV) would substantially decrease the solubility of U as well as co-precipitate other actinides and radionuclides. The interaction experiments were conducted in 0.01 M NaCl and 0.002 M NaHCO3 solutions using an initial uranium concentration of either 8.4 • 10-8 or 4.2 • 10-7 mol/L with an initial Fe(II) concentration of 1.8 • 10-6  in the NaCl solutions and 1.3 • 10-6 mol/L in the NaHCO3 solutions. Only after an equilibration period for U(VI) complexation was Fe(II) added to the solutions. The reaction times varied from 1 week to 5 months. For extra protection against O2, even inside a glove-box (N2 atmosphere), the plastic reaction vessels were closed in metallic containers. The concentrations of U, FeTOT and Fe(II) were analysed as a function of time for unfiltered, micro- and ultrafiltered samples. In addition, the precipitate on the ultrafilters was analysed with ESEM-EDS. The evolution of pH and Eh values was measured. The oxidation state of U in solution was preliminarily analysed for chosen periods. The results of the tests in 0.01 M NaCl showed an initial rapid decrease in U concentration after the addition of Fe(II) to the solution. The U found on test vessel walls at the end of the reaction periods, as well as the ESEM-EDS analyses of the filtered precipitates from the test solutions, showed that precipitation of U had occurred. The oxidation state analyses showed the presence of U(IV) in the solutions after 3 and 6 weeks’ reaction time. These results suggest that the reduction of U(VI) by Fe(II) occurred in NaCl solution. The observed change in U concentration in 0.002 M NaHCO3 solution was small and very slow. Uranium(IV) was also found in solution in this test, showing that some reduction occurred in spite of the stabilising effect of carbonates on U(VI) solutions.

AB - The aim of these experiments is to investigate the potential reduction of U(VI) carbonate and hydroxide complexes by aqueous Fe(II). This reduction phenomenon could be important under the disposal conditions of spent fuel. If groundwater enters the copper/iron canister, alpha radiolysis of the water may locally induce oxidizing conditions on the surface of UO2 fuel, leading to the dissolution of UO2 as more soluble U(VI) species. A potential reducing agent in the intruding water is Fe(II)(aq) from anaerobic corrosion of the copper/iron canister. The reduction of U(VI) to U(IV) would substantially decrease the solubility of U as well as co-precipitate other actinides and radionuclides. The interaction experiments were conducted in 0.01 M NaCl and 0.002 M NaHCO3 solutions using an initial uranium concentration of either 8.4 • 10-8 or 4.2 • 10-7 mol/L with an initial Fe(II) concentration of 1.8 • 10-6  in the NaCl solutions and 1.3 • 10-6 mol/L in the NaHCO3 solutions. Only after an equilibration period for U(VI) complexation was Fe(II) added to the solutions. The reaction times varied from 1 week to 5 months. For extra protection against O2, even inside a glove-box (N2 atmosphere), the plastic reaction vessels were closed in metallic containers. The concentrations of U, FeTOT and Fe(II) were analysed as a function of time for unfiltered, micro- and ultrafiltered samples. In addition, the precipitate on the ultrafilters was analysed with ESEM-EDS. The evolution of pH and Eh values was measured. The oxidation state of U in solution was preliminarily analysed for chosen periods. The results of the tests in 0.01 M NaCl showed an initial rapid decrease in U concentration after the addition of Fe(II) to the solution. The U found on test vessel walls at the end of the reaction periods, as well as the ESEM-EDS analyses of the filtered precipitates from the test solutions, showed that precipitation of U had occurred. The oxidation state analyses showed the presence of U(IV) in the solutions after 3 and 6 weeks’ reaction time. These results suggest that the reduction of U(VI) by Fe(II) occurred in NaCl solution. The observed change in U concentration in 0.002 M NaHCO3 solution was small and very slow. Uranium(IV) was also found in solution in this test, showing that some reduction occurred in spite of the stabilising effect of carbonates on U(VI) solutions.

KW - Uranium

KW - reduction

KW - iron

KW - Fe2+(aq)

KW - anoxic conditions

KW - spent fuel

M3 - Report

T3 - Working Report

BT - Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions

PB - Posiva

CY - Olkiluoto, Eurajoki

ER -

Myllykylä E, Ollila K. Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions: Closed system experiments. Olkiluoto, Eurajoki: Posiva , 2011. 35 p. (Working Report; No. 2011-06).