Abstract
Abstract Nitrogen seeded JET-ILW H-mode plasmas have been investigated with EDGE2D-EIRENE. The simulations reproduce the experimentally observed factor of 10 reduction in the outer target power deposition when the normalized divertor radiation, Praddiv/PSOL, increases from the unseeded levels of 15% up to the 50% levels required for detachment. At these radiation levels, nitrogen is predicted dominate the total radiation with a contribution of 85%, consistent with previous measurements in JET-C. Due to the low radiative potential of nitrogen at the electron temperatures above 100 eV, more than 80% of the radiation is predicted to occur in the scrape-off layer, making nitrogen a suitable divertor radiator for typical JET divertor conditions with Te around 30 eV. The simulations reproduce the experimentally observed particle flux reduction at the low-field side target without the need for strong recombination. This is due to strong impurity radiation reducing the power levels entering the deuterium ionization front.
Original language | English |
---|---|
Article number | 48544 |
Pages (from-to) | 135-142 |
Journal | Journal of Nuclear Materials |
Volume | 463 |
DOIs | |
Publication status | Published - 22 Jul 2015 |
MoE publication type | A1 Journal article-refereed |