Isolation and characterisation of lignin from steam pretreated spruce and its utilisation to study cellulase adsorption on lignin: Master's thesis

Research output: ThesisMaster's thesisTheses

Abstract

Environmental concerns and limited availability of fossil hydrocarbons have boosted the research of renewable feedstocks and their processing into fuels and chemicals. Currently, vast majority of transportation fuels and bulk chemicals are refined from crude oil, but renewable lignocellulosic plant biomass has long been recognised as potential feedstock for liquid fuel and chemical production. Several alternative processes exist for biomass refining, lignocellulose-to-ethanol process being among the most studied processes. First, lignocellulose is pretreated in order to deconstruct the recalcitrant structures of plant cell walls and expose cellulosic fibrils. Subsequently, biotechnical process utilises cellulolytic enzymes of fungal origin to depolymerise cellulose down to glucose monomers and oligomers. Monomeric sugars serve as a source for platform chemicals in further conversions. Lignocellulose consists mainly of cellulose, hemicellulose and lignin. It is generally accepted that lignin has an inhibitory effect during enzymatic hydrolysis of cellulose and part of this effect is caused by irreversible cellulase adsorption on lignin. Fungal cellulase system consists of several enzyme components that contribute to the effective degradation of insoluble cellulosic substrate. Cellulases are traditionally divided to three groups according to enzymatic activity: exoglucanases, endoglucanases and ?-glucosidases. Different enzyme components are shown to have different affinity to lignin which enables screening or engineering of weak lignin-binding enzymes. However, too little is still known about enzyme-lignin interactions and competitive nature of enzyme binding on lignin. In this study, lignin-rich residues were isolated from steam pretreated spruce (SPS) using three different methods:
enzymatic hydrolysis, acid hydrolysis and alkali extraction. Lignin residues were characterized and used in adsorption studies with commercial cellulase preparations from Trichoderma reesei (Celluclast 1.5L) and Aspergillus niger (Novozym 188). Enzyme activity measurements and protein analytics were employed to reveal competitive adsorption of cellulases and catalytic activity of solid-bound enzymes. Results showed that T. reesei enzymes had high affinity on lignocellulosic SPS and all SPS-derived lignins, but enzyme activity measurements revealed considerably divergent competitive adsorption patterns. Among all the isolated lignins, lignin-rich residue obtained by enzymatic hydrolysis of SPS and subsequent protease purification was evaluated as most suited adsorption substrate for further adsorption studies and screening purposes. ?-glucosidases from T. reesei and A. niger were shown to have highly distinctive adsorption behaviour on the lignin-rich substrates: A. niger ?-glucosidase lacked affinity to lignin, whereas T. reesei ?-glucosidase adsorbed to all lignin-rich particles. Lignin-bound Trichoderma reesei endoglucanases and CBH I exoglucanase were shown to retained high activity towards soluble substrates used in activity measurements. On the contrary, same enzymes were unable to processively hydrolyze insoluble crystalline cellulose.
Original languageEnglish
QualificationMaster Degree
Awarding Institution
  • University of Helsinki
Place of PublicationHelsinki
Publisher
Publication statusPublished - 2009
MoE publication typeG2 Master's thesis, polytechnic Master's thesis

Fingerprint

endo-1,4-beta-glucanase
steam
Picea
lignin
adsorption
Trichoderma reesei
glucosidases
enzymes
lignocellulose
cellulases
cellulose
enzymatic hydrolysis
Aspergillus niger
feedstocks
enzyme activity
screening
refining
acid hydrolysis
hemicellulose
catalytic activity

Keywords

  • Cellulase
  • lignin
  • inhibition
  • enzyme adsorption
  • enzymatic hydrolysis
  • steam pretreated spruce

Cite this

@phdthesis{1dbe98e280c34630b0c9974d3db9f301,
title = "Isolation and characterisation of lignin from steam pretreated spruce and its utilisation to study cellulase adsorption on lignin: Master's thesis",
abstract = "Environmental concerns and limited availability of fossil hydrocarbons have boosted the research of renewable feedstocks and their processing into fuels and chemicals. Currently, vast majority of transportation fuels and bulk chemicals are refined from crude oil, but renewable lignocellulosic plant biomass has long been recognised as potential feedstock for liquid fuel and chemical production. Several alternative processes exist for biomass refining, lignocellulose-to-ethanol process being among the most studied processes. First, lignocellulose is pretreated in order to deconstruct the recalcitrant structures of plant cell walls and expose cellulosic fibrils. Subsequently, biotechnical process utilises cellulolytic enzymes of fungal origin to depolymerise cellulose down to glucose monomers and oligomers. Monomeric sugars serve as a source for platform chemicals in further conversions. Lignocellulose consists mainly of cellulose, hemicellulose and lignin. It is generally accepted that lignin has an inhibitory effect during enzymatic hydrolysis of cellulose and part of this effect is caused by irreversible cellulase adsorption on lignin. Fungal cellulase system consists of several enzyme components that contribute to the effective degradation of insoluble cellulosic substrate. Cellulases are traditionally divided to three groups according to enzymatic activity: exoglucanases, endoglucanases and ?-glucosidases. Different enzyme components are shown to have different affinity to lignin which enables screening or engineering of weak lignin-binding enzymes. However, too little is still known about enzyme-lignin interactions and competitive nature of enzyme binding on lignin. In this study, lignin-rich residues were isolated from steam pretreated spruce (SPS) using three different methods: enzymatic hydrolysis, acid hydrolysis and alkali extraction. Lignin residues were characterized and used in adsorption studies with commercial cellulase preparations from Trichoderma reesei (Celluclast 1.5L) and Aspergillus niger (Novozym 188). Enzyme activity measurements and protein analytics were employed to reveal competitive adsorption of cellulases and catalytic activity of solid-bound enzymes. Results showed that T. reesei enzymes had high affinity on lignocellulosic SPS and all SPS-derived lignins, but enzyme activity measurements revealed considerably divergent competitive adsorption patterns. Among all the isolated lignins, lignin-rich residue obtained by enzymatic hydrolysis of SPS and subsequent protease purification was evaluated as most suited adsorption substrate for further adsorption studies and screening purposes. ?-glucosidases from T. reesei and A. niger were shown to have highly distinctive adsorption behaviour on the lignin-rich substrates: A. niger ?-glucosidase lacked affinity to lignin, whereas T. reesei ?-glucosidase adsorbed to all lignin-rich particles. Lignin-bound Trichoderma reesei endoglucanases and CBH I exoglucanase were shown to retained high activity towards soluble substrates used in activity measurements. On the contrary, same enzymes were unable to processively hydrolyze insoluble crystalline cellulose.",
keywords = "Cellulase, lignin, inhibition, enzyme adsorption, enzymatic hydrolysis, steam pretreated spruce",
author = "Jenni Rahikainen",
note = "CA2: TK404 OH: Master's thesis PGN: 90 p. + app. 3 p.",
year = "2009",
language = "English",
publisher = "University of Helsinki",
address = "Finland",
school = "University of Helsinki",

}

TY - THES

T1 - Isolation and characterisation of lignin from steam pretreated spruce and its utilisation to study cellulase adsorption on lignin

T2 - Master's thesis

AU - Rahikainen, Jenni

N1 - CA2: TK404 OH: Master's thesis PGN: 90 p. + app. 3 p.

PY - 2009

Y1 - 2009

N2 - Environmental concerns and limited availability of fossil hydrocarbons have boosted the research of renewable feedstocks and their processing into fuels and chemicals. Currently, vast majority of transportation fuels and bulk chemicals are refined from crude oil, but renewable lignocellulosic plant biomass has long been recognised as potential feedstock for liquid fuel and chemical production. Several alternative processes exist for biomass refining, lignocellulose-to-ethanol process being among the most studied processes. First, lignocellulose is pretreated in order to deconstruct the recalcitrant structures of plant cell walls and expose cellulosic fibrils. Subsequently, biotechnical process utilises cellulolytic enzymes of fungal origin to depolymerise cellulose down to glucose monomers and oligomers. Monomeric sugars serve as a source for platform chemicals in further conversions. Lignocellulose consists mainly of cellulose, hemicellulose and lignin. It is generally accepted that lignin has an inhibitory effect during enzymatic hydrolysis of cellulose and part of this effect is caused by irreversible cellulase adsorption on lignin. Fungal cellulase system consists of several enzyme components that contribute to the effective degradation of insoluble cellulosic substrate. Cellulases are traditionally divided to three groups according to enzymatic activity: exoglucanases, endoglucanases and ?-glucosidases. Different enzyme components are shown to have different affinity to lignin which enables screening or engineering of weak lignin-binding enzymes. However, too little is still known about enzyme-lignin interactions and competitive nature of enzyme binding on lignin. In this study, lignin-rich residues were isolated from steam pretreated spruce (SPS) using three different methods: enzymatic hydrolysis, acid hydrolysis and alkali extraction. Lignin residues were characterized and used in adsorption studies with commercial cellulase preparations from Trichoderma reesei (Celluclast 1.5L) and Aspergillus niger (Novozym 188). Enzyme activity measurements and protein analytics were employed to reveal competitive adsorption of cellulases and catalytic activity of solid-bound enzymes. Results showed that T. reesei enzymes had high affinity on lignocellulosic SPS and all SPS-derived lignins, but enzyme activity measurements revealed considerably divergent competitive adsorption patterns. Among all the isolated lignins, lignin-rich residue obtained by enzymatic hydrolysis of SPS and subsequent protease purification was evaluated as most suited adsorption substrate for further adsorption studies and screening purposes. ?-glucosidases from T. reesei and A. niger were shown to have highly distinctive adsorption behaviour on the lignin-rich substrates: A. niger ?-glucosidase lacked affinity to lignin, whereas T. reesei ?-glucosidase adsorbed to all lignin-rich particles. Lignin-bound Trichoderma reesei endoglucanases and CBH I exoglucanase were shown to retained high activity towards soluble substrates used in activity measurements. On the contrary, same enzymes were unable to processively hydrolyze insoluble crystalline cellulose.

AB - Environmental concerns and limited availability of fossil hydrocarbons have boosted the research of renewable feedstocks and their processing into fuels and chemicals. Currently, vast majority of transportation fuels and bulk chemicals are refined from crude oil, but renewable lignocellulosic plant biomass has long been recognised as potential feedstock for liquid fuel and chemical production. Several alternative processes exist for biomass refining, lignocellulose-to-ethanol process being among the most studied processes. First, lignocellulose is pretreated in order to deconstruct the recalcitrant structures of plant cell walls and expose cellulosic fibrils. Subsequently, biotechnical process utilises cellulolytic enzymes of fungal origin to depolymerise cellulose down to glucose monomers and oligomers. Monomeric sugars serve as a source for platform chemicals in further conversions. Lignocellulose consists mainly of cellulose, hemicellulose and lignin. It is generally accepted that lignin has an inhibitory effect during enzymatic hydrolysis of cellulose and part of this effect is caused by irreversible cellulase adsorption on lignin. Fungal cellulase system consists of several enzyme components that contribute to the effective degradation of insoluble cellulosic substrate. Cellulases are traditionally divided to three groups according to enzymatic activity: exoglucanases, endoglucanases and ?-glucosidases. Different enzyme components are shown to have different affinity to lignin which enables screening or engineering of weak lignin-binding enzymes. However, too little is still known about enzyme-lignin interactions and competitive nature of enzyme binding on lignin. In this study, lignin-rich residues were isolated from steam pretreated spruce (SPS) using three different methods: enzymatic hydrolysis, acid hydrolysis and alkali extraction. Lignin residues were characterized and used in adsorption studies with commercial cellulase preparations from Trichoderma reesei (Celluclast 1.5L) and Aspergillus niger (Novozym 188). Enzyme activity measurements and protein analytics were employed to reveal competitive adsorption of cellulases and catalytic activity of solid-bound enzymes. Results showed that T. reesei enzymes had high affinity on lignocellulosic SPS and all SPS-derived lignins, but enzyme activity measurements revealed considerably divergent competitive adsorption patterns. Among all the isolated lignins, lignin-rich residue obtained by enzymatic hydrolysis of SPS and subsequent protease purification was evaluated as most suited adsorption substrate for further adsorption studies and screening purposes. ?-glucosidases from T. reesei and A. niger were shown to have highly distinctive adsorption behaviour on the lignin-rich substrates: A. niger ?-glucosidase lacked affinity to lignin, whereas T. reesei ?-glucosidase adsorbed to all lignin-rich particles. Lignin-bound Trichoderma reesei endoglucanases and CBH I exoglucanase were shown to retained high activity towards soluble substrates used in activity measurements. On the contrary, same enzymes were unable to processively hydrolyze insoluble crystalline cellulose.

KW - Cellulase

KW - lignin

KW - inhibition

KW - enzyme adsorption

KW - enzymatic hydrolysis

KW - steam pretreated spruce

M3 - Master's thesis

PB - University of Helsinki

CY - Helsinki

ER -