Isotope identity experiments in JET-ILW with H and D L-mode plasmas

C. F. Maggi, H. Weisen, F. J. Casson, F. Auriemma, R. Lorenzini, H. Nordman, E. Delabie, F. Eriksson, J. Flanagan, D. Keeling, D. King, L. Horvath, S. Menmuir, A. Salmi, G. Sips, T. Tala, I. Voitsekhovich

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ , ν , β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.

Original languageEnglish
Article number076028
Number of pages11
JournalNuclear Fusion
Volume59
Issue number7
DOIs
Publication statusPublished - 2019
MoE publication typeA1 Journal article-refereed

Fingerprint

isotopes
thermal energy
heat
ion temperature
shearing
diffusivity
invariance
temperature gradients
momentum
scaling
gradients
profiles
simulation

Keywords

  • Isotope identity
  • JET-ILW
  • Tokamak plasmas

Cite this

Maggi, C. F., Weisen, H., Casson, F. J., Auriemma, F., Lorenzini, R., Nordman, H., ... Voitsekhovich, I. (2019). Isotope identity experiments in JET-ILW with H and D L-mode plasmas. Nuclear Fusion, 59(7), [076028]. https://doi.org/10.1088/1741-4326/ab1ccd
Maggi, C. F. ; Weisen, H. ; Casson, F. J. ; Auriemma, F. ; Lorenzini, R. ; Nordman, H. ; Delabie, E. ; Eriksson, F. ; Flanagan, J. ; Keeling, D. ; King, D. ; Horvath, L. ; Menmuir, S. ; Salmi, A. ; Sips, G. ; Tala, T. ; Voitsekhovich, I. / Isotope identity experiments in JET-ILW with H and D L-mode plasmas. In: Nuclear Fusion. 2019 ; Vol. 59, No. 7.
@article{67af884dac5e4db995fa53bb060b3e15,
title = "Isotope identity experiments in JET-ILW with H and D L-mode plasmas",
abstract = "NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ ∗, ν ∗, β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.",
keywords = "Isotope identity, JET-ILW, Tokamak plasmas",
author = "Maggi, {C. F.} and H. Weisen and Casson, {F. J.} and F. Auriemma and R. Lorenzini and H. Nordman and E. Delabie and F. Eriksson and J. Flanagan and D. Keeling and D. King and L. Horvath and S. Menmuir and A. Salmi and G. Sips and T. Tala and I. Voitsekhovich",
year = "2019",
doi = "10.1088/1741-4326/ab1ccd",
language = "English",
volume = "59",
journal = "Nuclear Fusion",
issn = "0029-5515",
publisher = "Institute of Physics IOP",
number = "7",

}

Maggi, CF, Weisen, H, Casson, FJ, Auriemma, F, Lorenzini, R, Nordman, H, Delabie, E, Eriksson, F, Flanagan, J, Keeling, D, King, D, Horvath, L, Menmuir, S, Salmi, A, Sips, G, Tala, T & Voitsekhovich, I 2019, 'Isotope identity experiments in JET-ILW with H and D L-mode plasmas', Nuclear Fusion, vol. 59, no. 7, 076028. https://doi.org/10.1088/1741-4326/ab1ccd

Isotope identity experiments in JET-ILW with H and D L-mode plasmas. / Maggi, C. F.; Weisen, H.; Casson, F. J.; Auriemma, F.; Lorenzini, R.; Nordman, H.; Delabie, E.; Eriksson, F.; Flanagan, J.; Keeling, D.; King, D.; Horvath, L.; Menmuir, S.; Salmi, A.; Sips, G.; Tala, T.; Voitsekhovich, I.

In: Nuclear Fusion, Vol. 59, No. 7, 076028, 2019.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Isotope identity experiments in JET-ILW with H and D L-mode plasmas

AU - Maggi, C. F.

AU - Weisen, H.

AU - Casson, F. J.

AU - Auriemma, F.

AU - Lorenzini, R.

AU - Nordman, H.

AU - Delabie, E.

AU - Eriksson, F.

AU - Flanagan, J.

AU - Keeling, D.

AU - King, D.

AU - Horvath, L.

AU - Menmuir, S.

AU - Salmi, A.

AU - Sips, G.

AU - Tala, T.

AU - Voitsekhovich, I.

PY - 2019

Y1 - 2019

N2 - NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ ∗, ν ∗, β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.

AB - NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ ∗, ν ∗, β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.

KW - Isotope identity

KW - JET-ILW

KW - Tokamak plasmas

UR - http://www.scopus.com/inward/record.url?scp=85069057089&partnerID=8YFLogxK

U2 - 10.1088/1741-4326/ab1ccd

DO - 10.1088/1741-4326/ab1ccd

M3 - Article

AN - SCOPUS:85069057089

VL - 59

JO - Nuclear Fusion

JF - Nuclear Fusion

SN - 0029-5515

IS - 7

M1 - 076028

ER -

Maggi CF, Weisen H, Casson FJ, Auriemma F, Lorenzini R, Nordman H et al. Isotope identity experiments in JET-ILW with H and D L-mode plasmas. Nuclear Fusion. 2019;59(7). 076028. https://doi.org/10.1088/1741-4326/ab1ccd