Isotope identity experiments in JET-ILW with H and D L-mode plasmas

C. F. Maggi, H. Weisen, F. J. Casson, F. Auriemma, R. Lorenzini, H. Nordman, E. Delabie, F. Eriksson, J. Flanagan, D. Keeling, D. King, L. Horvath, S. Menmuir, A. Salmi, G. Sips, T. Tala, I. Voitsekhovich

    Research output: Contribution to journalArticleScientificpeer-review

    4 Citations (Scopus)

    Abstract

    NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ , ν , β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.

    Original languageEnglish
    Article number076028
    Number of pages11
    JournalNuclear Fusion
    Volume59
    Issue number7
    DOIs
    Publication statusPublished - 2019
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    isotopes
    thermal energy
    heat
    ion temperature
    shearing
    diffusivity
    invariance
    temperature gradients
    momentum
    scaling
    gradients
    profiles
    simulation

    Keywords

    • Isotope identity
    • JET-ILW
    • Tokamak plasmas

    Cite this

    Maggi, C. F., Weisen, H., Casson, F. J., Auriemma, F., Lorenzini, R., Nordman, H., ... Voitsekhovich, I. (2019). Isotope identity experiments in JET-ILW with H and D L-mode plasmas. Nuclear Fusion, 59(7), [076028]. https://doi.org/10.1088/1741-4326/ab1ccd
    Maggi, C. F. ; Weisen, H. ; Casson, F. J. ; Auriemma, F. ; Lorenzini, R. ; Nordman, H. ; Delabie, E. ; Eriksson, F. ; Flanagan, J. ; Keeling, D. ; King, D. ; Horvath, L. ; Menmuir, S. ; Salmi, A. ; Sips, G. ; Tala, T. ; Voitsekhovich, I. / Isotope identity experiments in JET-ILW with H and D L-mode plasmas. In: Nuclear Fusion. 2019 ; Vol. 59, No. 7.
    @article{67af884dac5e4db995fa53bb060b3e15,
    title = "Isotope identity experiments in JET-ILW with H and D L-mode plasmas",
    abstract = "NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ ∗, ν ∗, β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.",
    keywords = "Isotope identity, JET-ILW, Tokamak plasmas",
    author = "Maggi, {C. F.} and H. Weisen and Casson, {F. J.} and F. Auriemma and R. Lorenzini and H. Nordman and E. Delabie and F. Eriksson and J. Flanagan and D. Keeling and D. King and L. Horvath and S. Menmuir and A. Salmi and G. Sips and T. Tala and I. Voitsekhovich",
    year = "2019",
    doi = "10.1088/1741-4326/ab1ccd",
    language = "English",
    volume = "59",
    journal = "Nuclear Fusion",
    issn = "0029-5515",
    publisher = "Institute of Physics IOP",
    number = "7",

    }

    Maggi, CF, Weisen, H, Casson, FJ, Auriemma, F, Lorenzini, R, Nordman, H, Delabie, E, Eriksson, F, Flanagan, J, Keeling, D, King, D, Horvath, L, Menmuir, S, Salmi, A, Sips, G, Tala, T & Voitsekhovich, I 2019, 'Isotope identity experiments in JET-ILW with H and D L-mode plasmas', Nuclear Fusion, vol. 59, no. 7, 076028. https://doi.org/10.1088/1741-4326/ab1ccd

    Isotope identity experiments in JET-ILW with H and D L-mode plasmas. / Maggi, C. F.; Weisen, H.; Casson, F. J.; Auriemma, F.; Lorenzini, R.; Nordman, H.; Delabie, E.; Eriksson, F.; Flanagan, J.; Keeling, D.; King, D.; Horvath, L.; Menmuir, S.; Salmi, A.; Sips, G.; Tala, T.; Voitsekhovich, I.

    In: Nuclear Fusion, Vol. 59, No. 7, 076028, 2019.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Isotope identity experiments in JET-ILW with H and D L-mode plasmas

    AU - Maggi, C. F.

    AU - Weisen, H.

    AU - Casson, F. J.

    AU - Auriemma, F.

    AU - Lorenzini, R.

    AU - Nordman, H.

    AU - Delabie, E.

    AU - Eriksson, F.

    AU - Flanagan, J.

    AU - Keeling, D.

    AU - King, D.

    AU - Horvath, L.

    AU - Menmuir, S.

    AU - Salmi, A.

    AU - Sips, G.

    AU - Tala, T.

    AU - Voitsekhovich, I.

    PY - 2019

    Y1 - 2019

    N2 - NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ ∗, ν ∗, β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.

    AB - NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, ρ ∗, ν ∗, β and q in the plasma core confinement region and same T i/T e and Z eff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, ωi τ E,th, and the scaled core plasma heat diffusivity, A χ eff/B T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E -B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.

    KW - Isotope identity

    KW - JET-ILW

    KW - Tokamak plasmas

    UR - http://www.scopus.com/inward/record.url?scp=85069057089&partnerID=8YFLogxK

    U2 - 10.1088/1741-4326/ab1ccd

    DO - 10.1088/1741-4326/ab1ccd

    M3 - Article

    AN - SCOPUS:85069057089

    VL - 59

    JO - Nuclear Fusion

    JF - Nuclear Fusion

    SN - 0029-5515

    IS - 7

    M1 - 076028

    ER -

    Maggi CF, Weisen H, Casson FJ, Auriemma F, Lorenzini R, Nordman H et al. Isotope identity experiments in JET-ILW with H and D L-mode plasmas. Nuclear Fusion. 2019;59(7). 076028. https://doi.org/10.1088/1741-4326/ab1ccd