TY - BOOK
T1 - Itseoppiva sujuvuusennuste Kehä I:lle
AU - Innamaa, Satu
N1 - PGN: 42 s. + liitt. 17 s.
TIEH 3200910
PY - 2004
Y1 - 2004
N2 - Tutkimuksen tavoitteena oli tehdä Kehä I:lle itseoppiva lyhyen aikavälin ennustemalli, joka ennustaa tiejaksoittain seuraavan 15 minuutin kuluessa lähdössä olevien ajoneuvojen sujuvuusluokan viisiportaisen luokittelun mukaisesti. Tarkoituksena oli kehittää mallia siten, että se oppii itse kohtaamistaan liikennetilanteista ja sopeuttaa ennusteitaan niiden perusteella ilman, että kaikkea mitattua aineistoa tarvitsee tallettaa. Tutkimuksen tavoitteet saavutettiin, sillä työn tuloksena saatiin kehitettyä itseorganisoituviin karttoihin ja klusterointiin perustuva malli, joka kykeni ennustamaan tiejaksojen sujuvuuden. Rakenteensa ansiosta malli kykeni oppimaan kohtaamistaan liikennetilanteista ilman, että kaikkea liikennetietoa piti tallettaa tietokantoihin. Tämän mahdollisti havaintojen luokittelu ja kunkin luokan vastetodennäköisyystaulukoiden päivittäminen. Mallia tehdessä kävi selväksi, ettei pelkkä mediaani kyennyt suodattamaan kaikkia poikkeavien matka-aikahavaintojen aiheuttamia vääristymiä. Yksinkertainen menetelmä osoittautui tehokkaaksi aineistoon ajantasaisesti tehtävässä esikäsittelyssä: matka-aikamediaaniaineisto suodatettiin havaintojen lukumäärän ja sen perusteella, kuinka paljon saatu mediaani suhteellisesti poikkesi edellisestä hyväksytystä arvosta. Online-kokeilun mukaan niiden ennusteiden osuus, jotka jäivät tekemättä siksi, että samantapaisten liikennetilanteiden klusteri oli tyhjä, pieneni odotetusti itseoppimisperiaatteen ansiosta ajan myötä. Pieneneminen oli kaikkien tiejaksojen osamalleilla suunnilleen 0,1 prosenttiyksikköä päivässä. Malli olisi ennustanut sujuvuutta paremmin, jos sillä olisi ollut käytettävissään matka-aikojen lisäksi ajantasainen tieto liikennemääristä. Nyt liikennemäärätieto kyllä oli käytettävissä, mutta se tuli niin pitkällä viiveellä (usein jopa 20 minuuttia), että tämä viive kumosi tiedon tuomat edut. Nyt kehitetyn mallin toimintaperiaate on sellainen, että se on sellaisenaan siirrettävissä helposti myös muualle. Kussakin kohteessa olemassa oleva liikenteen seurantajärjestelmä sanelee syötesuurevaihtoehdot. Alue, jolta yksittäisen osamallin syötteet kootaan, on riippuvainen paikasta ja sille tyypillisistä liikenteen ominaisuuksista. Syötesuureita voidaan ensin rajata karkeammin asiantuntija-arvauksen pohjalta ja lopulliset syötteet voidaan selvittää raportissa esitetyllä tavalla.
AB - Tutkimuksen tavoitteena oli tehdä Kehä I:lle itseoppiva lyhyen aikavälin ennustemalli, joka ennustaa tiejaksoittain seuraavan 15 minuutin kuluessa lähdössä olevien ajoneuvojen sujuvuusluokan viisiportaisen luokittelun mukaisesti. Tarkoituksena oli kehittää mallia siten, että se oppii itse kohtaamistaan liikennetilanteista ja sopeuttaa ennusteitaan niiden perusteella ilman, että kaikkea mitattua aineistoa tarvitsee tallettaa. Tutkimuksen tavoitteet saavutettiin, sillä työn tuloksena saatiin kehitettyä itseorganisoituviin karttoihin ja klusterointiin perustuva malli, joka kykeni ennustamaan tiejaksojen sujuvuuden. Rakenteensa ansiosta malli kykeni oppimaan kohtaamistaan liikennetilanteista ilman, että kaikkea liikennetietoa piti tallettaa tietokantoihin. Tämän mahdollisti havaintojen luokittelu ja kunkin luokan vastetodennäköisyystaulukoiden päivittäminen. Mallia tehdessä kävi selväksi, ettei pelkkä mediaani kyennyt suodattamaan kaikkia poikkeavien matka-aikahavaintojen aiheuttamia vääristymiä. Yksinkertainen menetelmä osoittautui tehokkaaksi aineistoon ajantasaisesti tehtävässä esikäsittelyssä: matka-aikamediaaniaineisto suodatettiin havaintojen lukumäärän ja sen perusteella, kuinka paljon saatu mediaani suhteellisesti poikkesi edellisestä hyväksytystä arvosta. Online-kokeilun mukaan niiden ennusteiden osuus, jotka jäivät tekemättä siksi, että samantapaisten liikennetilanteiden klusteri oli tyhjä, pieneni odotetusti itseoppimisperiaatteen ansiosta ajan myötä. Pieneneminen oli kaikkien tiejaksojen osamalleilla suunnilleen 0,1 prosenttiyksikköä päivässä. Malli olisi ennustanut sujuvuutta paremmin, jos sillä olisi ollut käytettävissään matka-aikojen lisäksi ajantasainen tieto liikennemääristä. Nyt liikennemäärätieto kyllä oli käytettävissä, mutta se tuli niin pitkällä viiveellä (usein jopa 20 minuuttia), että tämä viive kumosi tiedon tuomat edut. Nyt kehitetyn mallin toimintaperiaate on sellainen, että se on sellaisenaan siirrettävissä helposti myös muualle. Kussakin kohteessa olemassa oleva liikenteen seurantajärjestelmä sanelee syötesuurevaihtoehdot. Alue, jolta yksittäisen osamallin syötteet kootaan, on riippuvainen paikasta ja sille tyypillisistä liikenteen ominaisuuksista. Syötesuureita voidaan ensin rajata karkeammin asiantuntija-arvauksen pohjalta ja lopulliset syötteet voidaan selvittää raportissa esitetyllä tavalla.
KW - traffic information
KW - prediction
KW - flow status
M3 - Report
SN - 951-803-400-1
T3 - Tiehallinnon selvityksiä
BT - Itseoppiva sujuvuusennuste Kehä I:lle
PB - Tiehallinto
CY - Helsinki
ER -