JINTRAC: A system of codes for integrated simulation of Tokamak scenarios

M. Romanelli, G. Corrigan, V. Parail, S. Wiesen, R. Ambrosino, P. Da Silva Aresta Belo, L. Garzotti, D. Harting, F. Köchl, T. Koskela, L. Lauro-Taroni, C Marchetto, M. Mattei, E. Militello-Asp, M.F.F. Nave, S. Pamela, Antti Salmi, P. Strand, G. Szepesi, EFDA-JET Contributors

    Research output: Contribution to journalArticleScientificpeer-review

    72 Citations (Scopus)

    Abstract

    Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding.
    Original languageEnglish
    Article number3403023
    Number of pages9
    JournalPlasma and Fusion Research
    Volume9
    DOIs
    Publication statusPublished - 2014
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    physics
    exploitation
    simulation
    reactors
    modules
    fusion
    engineering
    symmetry
    predictions
    energy

    Keywords

    • Tokamak
    • scenario modelling
    • integrated modelling
    • transport
    • scrape-off layer
    • fuelling and heating

    Cite this

    Romanelli, M., Corrigan, G., Parail, V., Wiesen, S., Ambrosino, R., Da Silva Aresta Belo, P., ... Contributors, EFDA-JET. (2014). JINTRAC: A system of codes for integrated simulation of Tokamak scenarios. Plasma and Fusion Research, 9, [3403023]. https://doi.org/10.1585/pfr.9.3403023
    Romanelli, M. ; Corrigan, G. ; Parail, V. ; Wiesen, S. ; Ambrosino, R. ; Da Silva Aresta Belo, P. ; Garzotti, L. ; Harting, D. ; Köchl, F. ; Koskela, T. ; Lauro-Taroni, L. ; Marchetto, C ; Mattei, M. ; Militello-Asp, E. ; Nave, M.F.F. ; Pamela, S. ; Salmi, Antti ; Strand, P. ; Szepesi, G. ; Contributors, EFDA-JET. / JINTRAC : A system of codes for integrated simulation of Tokamak scenarios. In: Plasma and Fusion Research. 2014 ; Vol. 9.
    @article{c7c927b375304090af0a77d708d1db06,
    title = "JINTRAC: A system of codes for integrated simulation of Tokamak scenarios",
    abstract = "Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding.",
    keywords = "Tokamak, scenario modelling, integrated modelling, transport, scrape-off layer, fuelling and heating",
    author = "M. Romanelli and G. Corrigan and V. Parail and S. Wiesen and R. Ambrosino and {Da Silva Aresta Belo}, P. and L. Garzotti and D. Harting and F. K{\"o}chl and T. Koskela and L. Lauro-Taroni and C Marchetto and M. Mattei and E. Militello-Asp and M.F.F. Nave and S. Pamela and Antti Salmi and P. Strand and G. Szepesi and EFDA-JET Contributors",
    year = "2014",
    doi = "10.1585/pfr.9.3403023",
    language = "English",
    volume = "9",
    journal = "Plasma and Fusion Research",
    issn = "1880-6821",

    }

    Romanelli, M, Corrigan, G, Parail, V, Wiesen, S, Ambrosino, R, Da Silva Aresta Belo, P, Garzotti, L, Harting, D, Köchl, F, Koskela, T, Lauro-Taroni, L, Marchetto, C, Mattei, M, Militello-Asp, E, Nave, MFF, Pamela, S, Salmi, A, Strand, P, Szepesi, G & Contributors, EFDA-JET 2014, 'JINTRAC: A system of codes for integrated simulation of Tokamak scenarios', Plasma and Fusion Research, vol. 9, 3403023. https://doi.org/10.1585/pfr.9.3403023

    JINTRAC : A system of codes for integrated simulation of Tokamak scenarios. / Romanelli, M.; Corrigan, G.; Parail, V.; Wiesen, S.; Ambrosino, R.; Da Silva Aresta Belo, P.; Garzotti, L.; Harting, D.; Köchl, F.; Koskela, T.; Lauro-Taroni, L.; Marchetto, C; Mattei, M.; Militello-Asp, E.; Nave, M.F.F.; Pamela, S.; Salmi, Antti; Strand, P.; Szepesi, G.; Contributors, EFDA-JET.

    In: Plasma and Fusion Research, Vol. 9, 3403023, 2014.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - JINTRAC

    T2 - A system of codes for integrated simulation of Tokamak scenarios

    AU - Romanelli, M.

    AU - Corrigan, G.

    AU - Parail, V.

    AU - Wiesen, S.

    AU - Ambrosino, R.

    AU - Da Silva Aresta Belo, P.

    AU - Garzotti, L.

    AU - Harting, D.

    AU - Köchl, F.

    AU - Koskela, T.

    AU - Lauro-Taroni, L.

    AU - Marchetto, C

    AU - Mattei, M.

    AU - Militello-Asp, E.

    AU - Nave, M.F.F.

    AU - Pamela, S.

    AU - Salmi, Antti

    AU - Strand, P.

    AU - Szepesi, G.

    AU - Contributors, EFDA-JET

    PY - 2014

    Y1 - 2014

    N2 - Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding.

    AB - Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding.

    KW - Tokamak

    KW - scenario modelling

    KW - integrated modelling

    KW - transport

    KW - scrape-off layer

    KW - fuelling and heating

    U2 - 10.1585/pfr.9.3403023

    DO - 10.1585/pfr.9.3403023

    M3 - Article

    VL - 9

    JO - Plasma and Fusion Research

    JF - Plasma and Fusion Research

    SN - 1880-6821

    M1 - 3403023

    ER -

    Romanelli M, Corrigan G, Parail V, Wiesen S, Ambrosino R, Da Silva Aresta Belo P et al. JINTRAC: A system of codes for integrated simulation of Tokamak scenarios. Plasma and Fusion Research. 2014;9. 3403023. https://doi.org/10.1585/pfr.9.3403023