TY - JOUR
T1 - Kinetic resolution of aminoalkenes by asymmetric hydroamination
T2 - A mechanistic study
AU - Reznichenko, Alexander L.
AU - Hampel, Frank
AU - Hultzsch, Kai C.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2009/11/23
Y1 - 2009/11/23
N2 - The kinetic resolution of chiral aminoalkenes by hydroamination-cyclization was studied by using 3,3'-bis(triarylsilyl)-substituted binaphtholate rare-earth-metal complexes. The resolution of 1-arylaminopentenes proceeds with high efficiency and high irans-diastereoselectivity, whereas the resolution process of 1-alkylaminopentenes suffers from decreasing resolution efficiency with increasing steric demand of the aliphatic substituent. Kinetic studies of the matching and mismatching substrate-catalyst pair by using enantiopure substrates and either the (R)- or (S)-binaphtholate catalysts revealed that the difference in resolution efficiency stems from a shift of the Curtin-Hammett pre-equilibrium. Al-though 1-arylaminopentenes favor the matching substrate-catalyst complex, preference for the mismatching substrate-catalyst complex for 1-alkylaminopentenes diminishes resolution efficiency. Nevertheless, the relative cyclization rate for the two diastereomeric substrate-catalyst complexes remains in a typical range of 7-10:1. Plausible attractive π interactions between the aryl substituent and either the metal center or the aromatic system of the bis(triarylsilyl)-substituted binaphtholate ligand may explain increased sta-bility of the matching substrate-catalyst complex. Incidentally, the methoxymethyl (MOM)-substituted aminopentene 3g also exhibited a strong preference for the matching substrate-catalyst complex, possibly due to the chelating nature of the MOM substituent. The proximity of the stereocenter to the amino group in the aminoalkene substrate was crucial to achieve good kinetic resolution efficiency. The more remote β-phenyl substituent in 2-phenylpent-4-en-l-amine (5) resulted in diminished discrimination of the substrate enantiomers with respect to the relative rate of cyclization of the two substrate-catalyst complexes and a Curtin-Hammett preequilibrium close to unity.
AB - The kinetic resolution of chiral aminoalkenes by hydroamination-cyclization was studied by using 3,3'-bis(triarylsilyl)-substituted binaphtholate rare-earth-metal complexes. The resolution of 1-arylaminopentenes proceeds with high efficiency and high irans-diastereoselectivity, whereas the resolution process of 1-alkylaminopentenes suffers from decreasing resolution efficiency with increasing steric demand of the aliphatic substituent. Kinetic studies of the matching and mismatching substrate-catalyst pair by using enantiopure substrates and either the (R)- or (S)-binaphtholate catalysts revealed that the difference in resolution efficiency stems from a shift of the Curtin-Hammett pre-equilibrium. Al-though 1-arylaminopentenes favor the matching substrate-catalyst complex, preference for the mismatching substrate-catalyst complex for 1-alkylaminopentenes diminishes resolution efficiency. Nevertheless, the relative cyclization rate for the two diastereomeric substrate-catalyst complexes remains in a typical range of 7-10:1. Plausible attractive π interactions between the aryl substituent and either the metal center or the aromatic system of the bis(triarylsilyl)-substituted binaphtholate ligand may explain increased sta-bility of the matching substrate-catalyst complex. Incidentally, the methoxymethyl (MOM)-substituted aminopentene 3g also exhibited a strong preference for the matching substrate-catalyst complex, possibly due to the chelating nature of the MOM substituent. The proximity of the stereocenter to the amino group in the aminoalkene substrate was crucial to achieve good kinetic resolution efficiency. The more remote β-phenyl substituent in 2-phenylpent-4-en-l-amine (5) resulted in diminished discrimination of the substrate enantiomers with respect to the relative rate of cyclization of the two substrate-catalyst complexes and a Curtin-Hammett preequilibrium close to unity.
KW - Asymmetric catalysis
KW - Hydroamination
KW - Kinetic resolution
KW - Rare earths
KW - Reaction mechanisms
UR - http://www.scopus.com/inward/record.url?scp=71549165768&partnerID=8YFLogxK
U2 - 10.1002/chem.200902229
DO - 10.1002/chem.200902229
M3 - Article
C2 - 19834946
AN - SCOPUS:71549165768
SN - 0947-6539
VL - 15
SP - 12819
EP - 12827
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 46
ER -