Kinetics of pressure-induced effects in water ice/rock granular mixtures and application to the physics of the icy satellites

J Leliwa-Kopystynski (Corresponding Author), Lasse Makkonen, Olli Erikoinen, K. Kossacki

    Research output: Contribution to journalArticleScientificpeer-review

    18 Citations (Scopus)

    Abstract

    This paper concerns the rheological experiments on compaction of water ice and water ice/rock samples prepared from granular material. The rock to total mass ratio was C = 0, 0.25, 0.465, 0.5, 1 for five different samples. The temperature was kept constant, T = 213 K, for all experimental runs. The pressure regime, p = 80–820 MPa, is that which is interesting from the point of view of the physics and evolution of the interiors of the icy satellites of the giant planets. The densification rate, (dp/dt)/p, encountered in the experiments decreased from some 10−4s−1 at the beginning of a run to (10−7–10−8)s−1 at the end, some hours later. The densification rate itself mainly represents: (I) the rate of decrease of porosity (dq/dt)/q, when the pressure is relatively low (lower than the phase transition pressure ice I ⇒ ice II, approximately 200 Mpa), and (ii) the kinetics of the phase transitions ice I ⇒ ice II ⇒ ice VI when the pressure exceeds 200 and 600 MPa, respectively. The appropriate formulae were fitted to the experimental data: (i) the formula for the rate of decrease of porosity; it is of the same type as it was established previously for pressure up to 17.7 Mpa (Leliwa-Kopystyński and Maeno. J. Glaciology39, 645–655, 1993); (ii) the formula for the phase transition rate. The experimental results, when extrapolated to lower temperatures, provide date appropriate for the icy/rocky regolith of satellites; it is very plausible that the porous regolith layer extended in the past or it extends even now, to the deep interiors of medium size satellites (Kossacki and Leliwa-Kopystyński, Planet. Space Sci.41, 729–741, 1993). The kinetics of the phase transitions within the icy component of satellites must influence the convection and differentiation processes and therefore it is related to the tectonics of satellites.
    Original languageEnglish
    Pages (from-to)545-555
    Number of pages11
    JournalPlanetary and Space Science
    Volume42
    Issue number7
    DOIs
    Publication statusPublished - 1994
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    icy satellites
    ice
    physics
    rocks
    kinetics
    phase transition
    rock
    water
    regolith
    densification
    planets
    pressure ice
    planet
    porosity
    transition pressure
    granular materials
    mass ratios
    effect
    tectonics
    convection

    Cite this

    @article{dae5a68242a641149d1f45c8fac3d8ae,
    title = "Kinetics of pressure-induced effects in water ice/rock granular mixtures and application to the physics of the icy satellites",
    abstract = "This paper concerns the rheological experiments on compaction of water ice and water ice/rock samples prepared from granular material. The rock to total mass ratio was C = 0, 0.25, 0.465, 0.5, 1 for five different samples. The temperature was kept constant, T = 213 K, for all experimental runs. The pressure regime, p = 80–820 MPa, is that which is interesting from the point of view of the physics and evolution of the interiors of the icy satellites of the giant planets. The densification rate, (dp/dt)/p, encountered in the experiments decreased from some 10−4s−1 at the beginning of a run to (10−7–10−8)s−1 at the end, some hours later. The densification rate itself mainly represents: (I) the rate of decrease of porosity (dq/dt)/q, when the pressure is relatively low (lower than the phase transition pressure ice I ⇒ ice II, approximately 200 Mpa), and (ii) the kinetics of the phase transitions ice I ⇒ ice II ⇒ ice VI when the pressure exceeds 200 and 600 MPa, respectively. The appropriate formulae were fitted to the experimental data: (i) the formula for the rate of decrease of porosity; it is of the same type as it was established previously for pressure up to 17.7 Mpa (Leliwa-Kopystyński and Maeno. J. Glaciology39, 645–655, 1993); (ii) the formula for the phase transition rate. The experimental results, when extrapolated to lower temperatures, provide date appropriate for the icy/rocky regolith of satellites; it is very plausible that the porous regolith layer extended in the past or it extends even now, to the deep interiors of medium size satellites (Kossacki and Leliwa-Kopystyński, Planet. Space Sci.41, 729–741, 1993). The kinetics of the phase transitions within the icy component of satellites must influence the convection and differentiation processes and therefore it is related to the tectonics of satellites.",
    author = "J Leliwa-Kopystynski and Lasse Makkonen and Olli Erikoinen and K. Kossacki",
    year = "1994",
    doi = "10.1016/0032-0633(94)90076-0",
    language = "English",
    volume = "42",
    pages = "545--555",
    journal = "Planetary and Space Science",
    issn = "0032-0633",
    publisher = "Pergamon Press",
    number = "7",

    }

    Kinetics of pressure-induced effects in water ice/rock granular mixtures and application to the physics of the icy satellites. / Leliwa-Kopystynski, J (Corresponding Author); Makkonen, Lasse; Erikoinen, Olli; Kossacki, K.

    In: Planetary and Space Science, Vol. 42, No. 7, 1994, p. 545-555.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - Kinetics of pressure-induced effects in water ice/rock granular mixtures and application to the physics of the icy satellites

    AU - Leliwa-Kopystynski, J

    AU - Makkonen, Lasse

    AU - Erikoinen, Olli

    AU - Kossacki, K.

    PY - 1994

    Y1 - 1994

    N2 - This paper concerns the rheological experiments on compaction of water ice and water ice/rock samples prepared from granular material. The rock to total mass ratio was C = 0, 0.25, 0.465, 0.5, 1 for five different samples. The temperature was kept constant, T = 213 K, for all experimental runs. The pressure regime, p = 80–820 MPa, is that which is interesting from the point of view of the physics and evolution of the interiors of the icy satellites of the giant planets. The densification rate, (dp/dt)/p, encountered in the experiments decreased from some 10−4s−1 at the beginning of a run to (10−7–10−8)s−1 at the end, some hours later. The densification rate itself mainly represents: (I) the rate of decrease of porosity (dq/dt)/q, when the pressure is relatively low (lower than the phase transition pressure ice I ⇒ ice II, approximately 200 Mpa), and (ii) the kinetics of the phase transitions ice I ⇒ ice II ⇒ ice VI when the pressure exceeds 200 and 600 MPa, respectively. The appropriate formulae were fitted to the experimental data: (i) the formula for the rate of decrease of porosity; it is of the same type as it was established previously for pressure up to 17.7 Mpa (Leliwa-Kopystyński and Maeno. J. Glaciology39, 645–655, 1993); (ii) the formula for the phase transition rate. The experimental results, when extrapolated to lower temperatures, provide date appropriate for the icy/rocky regolith of satellites; it is very plausible that the porous regolith layer extended in the past or it extends even now, to the deep interiors of medium size satellites (Kossacki and Leliwa-Kopystyński, Planet. Space Sci.41, 729–741, 1993). The kinetics of the phase transitions within the icy component of satellites must influence the convection and differentiation processes and therefore it is related to the tectonics of satellites.

    AB - This paper concerns the rheological experiments on compaction of water ice and water ice/rock samples prepared from granular material. The rock to total mass ratio was C = 0, 0.25, 0.465, 0.5, 1 for five different samples. The temperature was kept constant, T = 213 K, for all experimental runs. The pressure regime, p = 80–820 MPa, is that which is interesting from the point of view of the physics and evolution of the interiors of the icy satellites of the giant planets. The densification rate, (dp/dt)/p, encountered in the experiments decreased from some 10−4s−1 at the beginning of a run to (10−7–10−8)s−1 at the end, some hours later. The densification rate itself mainly represents: (I) the rate of decrease of porosity (dq/dt)/q, when the pressure is relatively low (lower than the phase transition pressure ice I ⇒ ice II, approximately 200 Mpa), and (ii) the kinetics of the phase transitions ice I ⇒ ice II ⇒ ice VI when the pressure exceeds 200 and 600 MPa, respectively. The appropriate formulae were fitted to the experimental data: (i) the formula for the rate of decrease of porosity; it is of the same type as it was established previously for pressure up to 17.7 Mpa (Leliwa-Kopystyński and Maeno. J. Glaciology39, 645–655, 1993); (ii) the formula for the phase transition rate. The experimental results, when extrapolated to lower temperatures, provide date appropriate for the icy/rocky regolith of satellites; it is very plausible that the porous regolith layer extended in the past or it extends even now, to the deep interiors of medium size satellites (Kossacki and Leliwa-Kopystyński, Planet. Space Sci.41, 729–741, 1993). The kinetics of the phase transitions within the icy component of satellites must influence the convection and differentiation processes and therefore it is related to the tectonics of satellites.

    U2 - 10.1016/0032-0633(94)90076-0

    DO - 10.1016/0032-0633(94)90076-0

    M3 - Article

    VL - 42

    SP - 545

    EP - 555

    JO - Planetary and Space Science

    JF - Planetary and Space Science

    SN - 0032-0633

    IS - 7

    ER -