Abstract
Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of l-boronophenylalanine-fructose (l-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of l-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated l-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of l-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an l-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.
| Original language | English |
|---|---|
| Pages (from-to) | 369-376 |
| Number of pages | 8 |
| Journal | International Journal of Radiation Oncology Biology Physics |
| Volume | 80 |
| Issue number | 2 |
| DOIs | |
| Publication status | Published - 1 Jun 2011 |
| MoE publication type | A1 Journal article-refereed |
Funding
This study was supported by the Academy of Finland and Helsinki University Central Hospital research funds.
Keywords
- Anaplastic astrocytoma
- Boron neutron capture therapy
- Boronophenylalanine
- Brain tumor
- Glioblastoma