TY - JOUR
T1 - Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition process
AU - Aspiotis, Nikolaos
AU - Morgan, Katrina
AU - März, Benjamin
AU - Müller-Caspary, Knut
AU - Ebert, Martin
AU - Weatherby, Ed
AU - Light, Mark E.
AU - Huang, Chung Che
AU - Hewak, Daniel W.
AU - Majumdar, Sayani
AU - Zeimpekis, Ioannis
N1 - Funding Information:
The support of the UK’s Engineering and Physical Science Research Centre is gratefully acknowledged, through EP/N00762X/1 National Hub in High Value Photonic Manufacturing. The project made use of the Micronova Nanofabrication Centre. The ESTEEM3 project funded through grant agreement 823717 is acknowledged for supporting the preliminary top view STEM studies. B.M. and K.M.-C. acknowledge financial support from the Deutsche Forschungsgemeinschaft under grant number EXC 2089/1–390776260 (Germany ́s Excellence Strategy). The authors also acknowledge the use of facilities within the Loughborough Materials Characterisation Centre. The authors acknowledge the EPSRC for financial support of the Rigaku SmartLab via grants (EP/K009877/1), (EP/K00509X/1) and (EP/V035975/1). S.M. acknowledges financial support from the Academy of Finland (Grant no. 345068 and 350667) and European Union’s Horizon 2020 research and innovation programme under Grant Agreement 881603 (Graphene Flagship Core3).
Publisher Copyright:
© 2023, The Author(s).
PY - 2023/3/27
Y1 - 2023/3/27
N2 - This work demonstrates a large area process for atomically thin 2D semiconductors to unlock the technological upscale required for their commercial uptake. The new atomic layer deposition (ALD) and conversion technique yields large area performance uniformity and tunability. Like graphene, 2D Transition Metal Dichalcogenides (TMDCs) are prone to upscaling challenges limiting their commercial uptake. They are challenging to grow uniformly on large substrates and to transfer on alternative substrates while they often lack in large area electrical performance uniformity. The scalable ALD process of this work enables uniform growth of 2D TMDCs on large area with independent control of layer thickness, stoichiometry and crystallinity while allowing chemical free transfers to application substrates. Field effect transistors (FETs) fabricated on flexible substrates using the process present a field effect mobility of up to 55 cm2/Vs, subthreshold slope down to 80 mV/dec and on/off ratios of 107. In addition, non-volatile memory transistors using ferroelectric FETs (FeFETs) operating at ±5 V with on/off ratio of 107 and a memory window of 3.25 V are demonstrated. These FeFETs demonstrate state-of-the-art performance with multiple state switching, suitable for one-transistor non-volatile memory and for synaptic transistors revealing the applicability of the process to flexible neuromorphic applications.
AB - This work demonstrates a large area process for atomically thin 2D semiconductors to unlock the technological upscale required for their commercial uptake. The new atomic layer deposition (ALD) and conversion technique yields large area performance uniformity and tunability. Like graphene, 2D Transition Metal Dichalcogenides (TMDCs) are prone to upscaling challenges limiting their commercial uptake. They are challenging to grow uniformly on large substrates and to transfer on alternative substrates while they often lack in large area electrical performance uniformity. The scalable ALD process of this work enables uniform growth of 2D TMDCs on large area with independent control of layer thickness, stoichiometry and crystallinity while allowing chemical free transfers to application substrates. Field effect transistors (FETs) fabricated on flexible substrates using the process present a field effect mobility of up to 55 cm2/Vs, subthreshold slope down to 80 mV/dec and on/off ratios of 107. In addition, non-volatile memory transistors using ferroelectric FETs (FeFETs) operating at ±5 V with on/off ratio of 107 and a memory window of 3.25 V are demonstrated. These FeFETs demonstrate state-of-the-art performance with multiple state switching, suitable for one-transistor non-volatile memory and for synaptic transistors revealing the applicability of the process to flexible neuromorphic applications.
UR - http://www.scopus.com/inward/record.url?scp=85151362395&partnerID=8YFLogxK
U2 - 10.1038/s41699-023-00379-z
DO - 10.1038/s41699-023-00379-z
M3 - Article
AN - SCOPUS:85151362395
SN - 2397-7132
VL - 7
JO - npj 2D Materials and Applications
JF - npj 2D Materials and Applications
IS - 1
M1 - 18
ER -