TY - JOUR
T1 - Large-Eddy Simulation of two secondary air supply strategies in kraft recovery boilers
AU - Laitinen, Alpo
AU - Laurila, Erkki
AU - Keskinen, Karri
AU - Vuorinen, Ville
N1 - Funding Information:
This work was funded by Andritz Oy, Finland. The computational resources for this study were provided by CSC Finnish IT Center for Science.
Publisher Copyright:
© 2022 The Authors
PY - 2022/11/5
Y1 - 2022/11/5
N2 - Kraft recovery boilers are large scale combustion applications operating on black liquor, a common side-product of the pulp industry. Here, a simplified boiler model utilizing Computational Fluid Dynamics (CFD) with Large-Eddy Simulation (LES) and Lagrangian Particle Tracking (LPT) is explored to better understand the secondary air supply system and the dispersion of sprayed droplets. The unsteady nature of the air jets and droplet dispersion in such context advocates the usage of scale-resolving simulations such as LES. In the present exploratory study, the usage of LES in recovery boiler air jet simulations is piloted for the first time. The air supply system is modeled as high-momentum-flux jets injected to a uniform cross-flow. First, the set-up was verified by performing a mesh sensitivity study. The main observed global flow features included the mixing zones, wall jet and jet impact regions, jet bending in cross-flow, and reverse flow downstream of the jets. Two different engineering relevant air supply systems, a staggered and an in-line configuration, were studied and compared in terms of mixing and droplet dispersion. The main findings of the present study are as follows. First, out of the two studied configurations, the staggered one was observed to provide a more uniform downstream temperature field. Second, the in-line configuration was noted to outperform the staggered configuration in droplet dispersion by having 22% less spray-wall impingement and 15% more droplets landing at the bottom of the furnace. Third, different modes for droplet trajectories were identified based on the global flow structures.
AB - Kraft recovery boilers are large scale combustion applications operating on black liquor, a common side-product of the pulp industry. Here, a simplified boiler model utilizing Computational Fluid Dynamics (CFD) with Large-Eddy Simulation (LES) and Lagrangian Particle Tracking (LPT) is explored to better understand the secondary air supply system and the dispersion of sprayed droplets. The unsteady nature of the air jets and droplet dispersion in such context advocates the usage of scale-resolving simulations such as LES. In the present exploratory study, the usage of LES in recovery boiler air jet simulations is piloted for the first time. The air supply system is modeled as high-momentum-flux jets injected to a uniform cross-flow. First, the set-up was verified by performing a mesh sensitivity study. The main observed global flow features included the mixing zones, wall jet and jet impact regions, jet bending in cross-flow, and reverse flow downstream of the jets. Two different engineering relevant air supply systems, a staggered and an in-line configuration, were studied and compared in terms of mixing and droplet dispersion. The main findings of the present study are as follows. First, out of the two studied configurations, the staggered one was observed to provide a more uniform downstream temperature field. Second, the in-line configuration was noted to outperform the staggered configuration in droplet dispersion by having 22% less spray-wall impingement and 15% more droplets landing at the bottom of the furnace. Third, different modes for droplet trajectories were identified based on the global flow structures.
KW - Air jets
KW - Black liquor
KW - Large-Eddy Simulation
KW - Mixing
UR - http://www.scopus.com/inward/record.url?scp=85135405228&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2022.119035
DO - 10.1016/j.applthermaleng.2022.119035
M3 - Article
SN - 1359-4311
VL - 216
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
M1 - 119035
ER -