Abstract
Millimeter wave (mmWave) beamforming is a vital component of the fifth generation (5G) new radio (NR) and beyond wireless communication systems. The usage of mmWave narrow beams encounters frequent signal attenuation due to random human blockages in indoor environments. Human blockage predictions can jointly improve the signal quality as well as passively sense human activities during mmWave communication. Human sensing using wireless fidelity (WiFi) systems has earlier been studied using receiver signal strength indicator (RSSI) signal level fluctuations based on distance measurements. Other conventional approaches using cameras, lidars, radars, etc. require additional hardware deployments. Current device-free WiFi sensing approaches use vendor-specific channel state information to obtain fine-grained human blockage predictions. Our novelty in this work is to obtain fine-grained human blockage direction predictions in mmWave spectrum, using a time series of RSSI measurements and build fingerprints. We perform experiments to construct a Human Millimetre-wave Radio Blockage Detection (HuMRaBD) dataset and observe human influence in different radio beam directions during each radio initial access procedure. We design a multi layer perceptron (MLP) framework to analyze the HuMRaBD dataset over coarse-grained and fine-grained mmWave blockage directions from static and dynamic human movements. The results show that our trained MLP-trained models can simultaneously sense multiple indoor human radio-blockage directions at an average F1 score of 0.84 and area under curve (AUC) score of 0.95 during mmWave communication.
Original language | English |
---|---|
Title of host publication | 2023 IEEE International Conference on Communications Workshops |
Subtitle of host publication | Sustainable Communications for Renaissance, ICC Workshops 2023 |
Publisher | IEEE Institute of Electrical and Electronic Engineers |
Pages | 1057-1062 |
Number of pages | 6 |
ISBN (Electronic) | 9798350333077 |
DOIs | |
Publication status | Published - 2023 |
MoE publication type | A4 Article in a conference publication |
Event | 2023 IEEE International Conference on Communications Workshops, ICC Workshops 2023 - Rome, Italy Duration: 28 May 2023 → 1 Jun 2023 |
Conference
Conference | 2023 IEEE International Conference on Communications Workshops, ICC Workshops 2023 |
---|---|
Country/Territory | Italy |
City | Rome |
Period | 28/05/23 → 1/06/23 |
Funding
ACKNOWLEDGEMENTS This work was supported in part by the Academy of Finland projects 6Genesis Flagship (grant number 346208) and Jenny-Antti Wihuri Foundation (grant number 220380).
Keywords
- 5G and beyond
- 6G
- joint communication and sensing
- mmWave
- multi layer perceptron