Lifetimes of confined acoustic phonons in ultrathin silicon membranes

J. Cuffe, O. Ristow, E. Chávez, Andrey Shchepetov, P.-O. Chapuis, F. Alzina, M. Hettich, Mika Prunnila, Jouni Ahopelto, T. Dekorsy, C.M. Sotomayor Torres (Corresponding Author)

Research output: Contribution to journalArticleScientificpeer-review

66 Citations (Scopus)

Abstract

We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ∼4.7  ns to 5 ps with decreasing membrane thickness from ∼194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.
Original languageEnglish
Article number095503
Number of pages5
JournalPhysical Review Letters
Volume110
Issue number9
DOIs
Publication statusPublished - 2013
MoE publication typeA1 Journal article-refereed

Fingerprint

phonons
membranes
life (durability)
acoustics
silicon
surface roughness
resonators
sampling
pumps
probes
decay
scattering
wavelengths
interactions

Cite this

Cuffe, J., Ristow, O., Chávez, E., Shchepetov, A., Chapuis, P-O., Alzina, F., ... Sotomayor Torres, C. M. (2013). Lifetimes of confined acoustic phonons in ultrathin silicon membranes. Physical Review Letters, 110(9), [095503]. https://doi.org/10.1103/PhysRevLett.110.095503
Cuffe, J. ; Ristow, O. ; Chávez, E. ; Shchepetov, Andrey ; Chapuis, P.-O. ; Alzina, F. ; Hettich, M. ; Prunnila, Mika ; Ahopelto, Jouni ; Dekorsy, T. ; Sotomayor Torres, C.M. / Lifetimes of confined acoustic phonons in ultrathin silicon membranes. In: Physical Review Letters. 2013 ; Vol. 110, No. 9.
@article{79bf27a3bd674798af63bf6d42be6995,
title = "Lifetimes of confined acoustic phonons in ultrathin silicon membranes",
abstract = "We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ∼4.7  ns to 5 ps with decreasing membrane thickness from ∼194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.",
author = "J. Cuffe and O. Ristow and E. Ch{\'a}vez and Andrey Shchepetov and P.-O. Chapuis and F. Alzina and M. Hettich and Mika Prunnila and Jouni Ahopelto and T. Dekorsy and {Sotomayor Torres}, C.M.",
year = "2013",
doi = "10.1103/PhysRevLett.110.095503",
language = "English",
volume = "110",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "9",

}

Cuffe, J, Ristow, O, Chávez, E, Shchepetov, A, Chapuis, P-O, Alzina, F, Hettich, M, Prunnila, M, Ahopelto, J, Dekorsy, T & Sotomayor Torres, CM 2013, 'Lifetimes of confined acoustic phonons in ultrathin silicon membranes', Physical Review Letters, vol. 110, no. 9, 095503. https://doi.org/10.1103/PhysRevLett.110.095503

Lifetimes of confined acoustic phonons in ultrathin silicon membranes. / Cuffe, J.; Ristow, O.; Chávez, E.; Shchepetov, Andrey; Chapuis, P.-O.; Alzina, F.; Hettich, M.; Prunnila, Mika; Ahopelto, Jouni; Dekorsy, T.; Sotomayor Torres, C.M. (Corresponding Author).

In: Physical Review Letters, Vol. 110, No. 9, 095503, 2013.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Lifetimes of confined acoustic phonons in ultrathin silicon membranes

AU - Cuffe, J.

AU - Ristow, O.

AU - Chávez, E.

AU - Shchepetov, Andrey

AU - Chapuis, P.-O.

AU - Alzina, F.

AU - Hettich, M.

AU - Prunnila, Mika

AU - Ahopelto, Jouni

AU - Dekorsy, T.

AU - Sotomayor Torres, C.M.

PY - 2013

Y1 - 2013

N2 - We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ∼4.7  ns to 5 ps with decreasing membrane thickness from ∼194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.

AB - We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ∼4.7  ns to 5 ps with decreasing membrane thickness from ∼194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.

U2 - 10.1103/PhysRevLett.110.095503

DO - 10.1103/PhysRevLett.110.095503

M3 - Article

VL - 110

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 9

M1 - 095503

ER -

Cuffe J, Ristow O, Chávez E, Shchepetov A, Chapuis P-O, Alzina F et al. Lifetimes of confined acoustic phonons in ultrathin silicon membranes. Physical Review Letters. 2013;110(9). 095503. https://doi.org/10.1103/PhysRevLett.110.095503