TY - JOUR
T1 - Low electric current in a bioelectrochemical system facilitates ethanol production from CO using CO-enriched mixed culture
AU - Im, Chaeho
AU - Kim, Minsoo
AU - Kim, Jung Rae
AU - Valgepea, Kaspar
AU - Modin, Oskar
AU - Nygård, Yvonne
AU - Franzén, Carl Johan
N1 - Publisher Copyright:
Copyright © 2024 Im, Kim, Kim, Valgepea, Modin, Nygård and Franzén.
PY - 2024
Y1 - 2024
N2 - Fossil resources must be replaced by renewable resources in production systems to mitigate green-house gas emissions and combat climate change. Electro-fermentation utilizes a bioelectrochemical system (BES) to valorize industrial and municipal waste. Current electro-fermentation research is mainly focused on microbial electrosynthesis using CO2 for producing commodity chemicals and replacing petroleum-based infrastructures. However, slow production rates and low titers of metabolites during CO2-based microbial electrosynthesis impede its implementation to the real application in the near future. On the other hand, CO is a highly reactive gas and an abundant feedstock discharged from fossil fuel-based industry. Here, we investigated CO and CO2 electro-fermentation, using a CO-enriched culture. Fresh cow fecal waste was enriched under an atmosphere of 50% CO and 20% CO2 in N2 using serial cultivation. The CO-enriched culture was dominated by Clostridium autoethanogenum (≥89%) and showed electro-activity in a BES reactor with CO2 sparging. When 50% CO was included in the 20% CO2 gas with 10 mA applied current, acetate and ethanol were produced up to 12.9 ± 2.7 mM and 2.7 ± 1.1 mM, respectively. The coulombic efficiency was estimated to 148% ± 8% without an electron mediator. At 25 mA, the culture showed faster initial growth and acetate production but no ethanol production, and only at 86% ± 4% coulombic efficiency. The maximum optical density (OD) of 10 mA and 25 mA reactors were 0.29 ± 0.07 and 0.41 ± 0.03, respectively, whereas it was 0.77 ± 0.19 without electric current. These results show that CO electro-fermentation at low current can be an alternative way of valorizing industrial waste gas using a bioelectrochemical system.
AB - Fossil resources must be replaced by renewable resources in production systems to mitigate green-house gas emissions and combat climate change. Electro-fermentation utilizes a bioelectrochemical system (BES) to valorize industrial and municipal waste. Current electro-fermentation research is mainly focused on microbial electrosynthesis using CO2 for producing commodity chemicals and replacing petroleum-based infrastructures. However, slow production rates and low titers of metabolites during CO2-based microbial electrosynthesis impede its implementation to the real application in the near future. On the other hand, CO is a highly reactive gas and an abundant feedstock discharged from fossil fuel-based industry. Here, we investigated CO and CO2 electro-fermentation, using a CO-enriched culture. Fresh cow fecal waste was enriched under an atmosphere of 50% CO and 20% CO2 in N2 using serial cultivation. The CO-enriched culture was dominated by Clostridium autoethanogenum (≥89%) and showed electro-activity in a BES reactor with CO2 sparging. When 50% CO was included in the 20% CO2 gas with 10 mA applied current, acetate and ethanol were produced up to 12.9 ± 2.7 mM and 2.7 ± 1.1 mM, respectively. The coulombic efficiency was estimated to 148% ± 8% without an electron mediator. At 25 mA, the culture showed faster initial growth and acetate production but no ethanol production, and only at 86% ± 4% coulombic efficiency. The maximum optical density (OD) of 10 mA and 25 mA reactors were 0.29 ± 0.07 and 0.41 ± 0.03, respectively, whereas it was 0.77 ± 0.19 without electric current. These results show that CO electro-fermentation at low current can be an alternative way of valorizing industrial waste gas using a bioelectrochemical system.
KW - acetogen
KW - bioelectrochemical system
KW - bioethanol
KW - carbon monoxide
KW - Clostridium autoethanogenum
KW - gas fermentation
KW - microbial electrosynthesis
UR - http://www.scopus.com/inward/record.url?scp=85203998426&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2024.1438758
DO - 10.3389/fmicb.2024.1438758
M3 - Article
AN - SCOPUS:85203998426
SN - 1664-302X
VL - 15
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 1438758
ER -