Measurements of sub-3nm particles using a particle size magnifier in different environments: From clean mountain top to polluted megacities

Jenni Kontkanen (Corresponding Author), Katrianne Lehtipalo, Lauri Ahonen, Juha Kangasluoma, Hanna E. Manninen, Jani Hakala, Clémence Rose, Karine Sellegri, Shan Xiao, Lin Wang, Ximeng Qi, Wei Nie, Aijun Ding, Huan Yu, Shanhu Lee, Veli Matti Kerminen, Tuukka Petäjä, Markku Kulmala

Research output: Contribution to journalArticleScientificpeer-review

68 Citations (Scopus)

Abstract

The measurement of sub-3nm aerosol particles is technically challenging. Therefore, there is a lack of knowledge about the concentrations of atmospheric sub-3nm particles and their variation in different environments. In this study, the concentrations of ∼1-3nm particles measured with a particle size magnifier (PSM) were investigated at nine sites around the world. Sub-3nm particle concentrations were highest at the sites with strong anthropogenic influence. In boreal forest, measured particle concentrations were clearly higher in summer than in winter, suggesting the importance of biogenic precursor vapors in this environment. At all sites, sub-3nm particle concentrations had daytime maxima, which are likely linked to the photochemical production of precursor vapors and the emissions of precursor vapors or particles from different sources. When comparing ion concentrations to the total sub-3nm particle concentrations, electrically neutral particles were observed to dominate in polluted environments and in boreal forest during spring and summer. Generally, the concentrations of sub-3nm particles seem to be determined by the availability of precursor vapors rather than the level of the sink caused by preexisting aerosol particles. The results also indicate that the formation of the smallest particles and their subsequent growth to larger sizes are two separate processes, and therefore studying the concentration of sub-3nm particles separately in different size ranges is essential.

Original languageEnglish
Pages (from-to)2163-2187
Number of pages25
JournalAtmospheric Chemistry and Physics
Volume17
Issue number3
DOIs
Publication statusPublished - 13 Feb 2017
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Measurements of sub-3nm particles using a particle size magnifier in different environments: From clean mountain top to polluted megacities'. Together they form a unique fingerprint.

Cite this