Abstract
Electrospun nonwovens, due to their intrinsic beneficial properties, have found many applications in biomedical areas such as tissue engineering, drug delivery, or active wound management. Exploiting its porous structure, electrospun is often used as scaffolds for tissue growth which can be stimulated by mechanical properties of the structure. Cells proliferation can be controlled by stress distribution in the scaffold, thus improving its efficiency. Anticipation of this parameter is possible by using Finite Elements Model of electrospun structure presented in this study. Fully parametric model of nonwoven material with random fibrous distribution was developed enabling the calculation of mechanical properties of material on the basis of input parameters such as mechanical characteristics and geometry of single component fibres. Relatively low production ratio of electrospinning process and time consuming characterisation methods were motivation to develop the tool that would shorten the design and optimisation of electrospun materials. The model was validated experimentally by mechanical testing of electrospun material; modelling and experimental results were in a good agreement.
Original language | English |
---|---|
Title of host publication | Medical Measurements and Applications (MeMeA), 2015 IEEE International Symposium on |
Publisher | IEEE Institute of Electrical and Electronic Engineers |
Pages | 507 - 511 |
ISBN (Electronic) | 978-1-4799-6477-2 |
DOIs | |
Publication status | Published - 2 Jul 2015 |
MoE publication type | A4 Article in a conference publication |
Event | 2015 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2015 - Torino, Italy Duration: 7 May 2015 → 9 May 2015 |
Conference
Conference | 2015 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2015 |
---|---|
Abbreviated title | MeMeA 2015 |
Country/Territory | Italy |
City | Torino |
Period | 7/05/15 → 9/05/15 |
Keywords
- electrospinning
- FEM
- modelling
- nonwoven
- tensile testing