Abstract
We report the effect of photonic field on the electronic and magnetic structure of a low bandwidth manganite Pr0.6Ca0.4MnO3 (PCMO) thin film. In particular, the present study confirmed a mechanism that was recently proposed to explain how optical excitation can bias or directly activate the metamagnetic transition associated with the colossal magnetoresistance (CMR) effect of PCMO. The transition is characterized by a shift in the dynamic equilibrium between ferromagnetic (FM) and antiferromagnetic clusters, explaining how it can be suddenly triggered by a sufficient external magnetic field. The film was always found to support some population of FM-clusters, the proportional size of which could be adjusted by the magnetic field and, especially in the vicinity of a thermomagnetic irreversibility, by optical excitation. The double exchange mechanism couples the magnetic degrees of freedom of manganites to their electronic structure, which is further coupled to the ion lattice via the Jahn–Teller mechanism. In accordance, it was found that producing optical phonons into the lattice could lower the free energy of the FM phase enough to significantly bias the CMR effect.
Original language | English |
---|---|
Article number | 425802 |
Number of pages | 8 |
Journal | Journal of Physics: Condensed Matter |
Volume | 29 |
Issue number | 42 |
DOIs | |
Publication status | Published - 2017 |
MoE publication type | A1 Journal article-refereed |
Keywords
- low bandwidth manganite
- electronic structure
- photoinduced magnetism
- metamagnetic transition