Mechanistic and constrained thermochemical modelling in chemical reactor engineering: Ti(IV) chloride oxidation revisited

Pertti Koukkari*, Eduardo Paiva

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    4 Citations (Scopus)

    Abstract

    In process and materials chemistry, computational modelling of complex reactive systems has been a long-time continuing process. The methodology based on numerical methods in mechanistic reaction kinetics as well as for fluid phase thermodynamics applying equations of state is well established. During the last two decades, however, thermodynamic multiphase technology based on the minimisation of Gibbs free energy has made progress in modelling both reactive flows and processing of functional materials. Recent advancements also include introduction of such new Gibbs'ian algorithms, which facilitate calculation of time-dependent changes in reactive multi-component multi-phase systems. Comparison between detailed kinetic mechanisms (DKMs) and multiphase thermochemical techniques has yet seldom been available. The present work describes a unique comparison between constrained Gibbs free energy calculation (with one constrained kinetic reaction rate) and detailed kinetic mechanism of 67 reversible reactions between 28 species, as performed for the industrially interesting Titanium(IV) chloride oxidation process. When confined to gas phase kinetics, the calculated results show fair agreement between the two different techniques. However, comparison with observations from an experimental plug flow reactor suggests that the formation of a solid Ti-oxide phase in the models becomes a necessity. The applicability of the alternative simulation techniques in chemical reactor engineering is shortly discussed.

    Original languageEnglish
    Pages (from-to)227-242
    JournalChemical Engineering Science
    Volume179
    DOIs
    Publication statusPublished - 2018
    MoE publication typeA1 Journal article-refereed

    Funding

    This work was supported by Strategic Research Council at the Academy of Finland, project Closeloop (grant number 303543).

    Keywords

    • Chemical affinity
    • Constrained free energy method (CFE)
    • Detailed kinetic mechanism (DKM)
    • Local thermodynamic equilibrium (LCE)
    • Modelling chemical reactors

    Fingerprint

    Dive into the research topics of 'Mechanistic and constrained thermochemical modelling in chemical reactor engineering: Ti(IV) chloride oxidation revisited'. Together they form a unique fingerprint.

    Cite this