Abstract
Purpose: The change in serum metabolic response from fasting state to postprandial state provides novel insights into the impact of a single meal on human metabolism. Therefore, this study explored changes in serum metabolite profile after a single meal.
Methods: Nineteen healthy postmenopausal women with normal glucose tolerance participated in the study. They received a meal consisting of refined wheat bread (50 g carbohydrates, 9 g protein, 4.2 g fat and 2.7 g dietary fibre), 40 g cucumber and 300 mL noncaloric orange drink. Blood samples were collected at fasting and five postprandial time points. Metabolic profile was measured by nuclear magnetic resonance and targeted liquid chromatography–mass spectrometry. Changes over time were assessed with multivariate models and ANOVA, with baseline as control.
Results: The metabolomic analyses demonstrated alterations in phospholipids, amino acids and their breakdown products, glycolytic products, acylcarnitines and ketone bodies after a single meal. More specifically, phosphatidylcholines, lysophosphatidylcholines and citrate displayed an overall declining pattern, while leucine, isoleucine, methionine and succinate increased initially but declined thereafter. A sharp decline in acylcarnitines and ketone bodies and increase in glycolytic products postprandially suggest a switch in the body’s energy source from β-oxidation to glycolysis. Moreover, individuals with relatively high postprandial insulin responses generated a higher postprandial leucine responses compared to participants with lower insulin responses.
Conclusions: The study demonstrated complex changes from catabolic to anabolic metabolism after a meal and indicated that the extent of postprandial responses is different between individuals with high and low insulin response.
Methods: Nineteen healthy postmenopausal women with normal glucose tolerance participated in the study. They received a meal consisting of refined wheat bread (50 g carbohydrates, 9 g protein, 4.2 g fat and 2.7 g dietary fibre), 40 g cucumber and 300 mL noncaloric orange drink. Blood samples were collected at fasting and five postprandial time points. Metabolic profile was measured by nuclear magnetic resonance and targeted liquid chromatography–mass spectrometry. Changes over time were assessed with multivariate models and ANOVA, with baseline as control.
Results: The metabolomic analyses demonstrated alterations in phospholipids, amino acids and their breakdown products, glycolytic products, acylcarnitines and ketone bodies after a single meal. More specifically, phosphatidylcholines, lysophosphatidylcholines and citrate displayed an overall declining pattern, while leucine, isoleucine, methionine and succinate increased initially but declined thereafter. A sharp decline in acylcarnitines and ketone bodies and increase in glycolytic products postprandially suggest a switch in the body’s energy source from β-oxidation to glycolysis. Moreover, individuals with relatively high postprandial insulin responses generated a higher postprandial leucine responses compared to participants with lower insulin responses.
Conclusions: The study demonstrated complex changes from catabolic to anabolic metabolism after a meal and indicated that the extent of postprandial responses is different between individuals with high and low insulin response.
Original language | English |
---|---|
Pages (from-to) | 671-681 |
Journal | European Journal of Nutrition |
Volume | 56 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Mar 2017 |
MoE publication type | A1 Journal article-refereed |
Funding
This work was conducted as part of the Nordic Centre of Excellence ‘Nordic Health—Whole Grain Food’ (HELGA) project and was funded by the Swedish Research Council FORMAS, Dr. Håkansson’s foundation and SLUmat—a research fund allocated to food research at the Swedish University of Agricultural Sciences. In addition, the human trial was supported by Fazer Bakeries Ltd, Vaasan & Vaasan Oy, and the Technology Development Centre of Finland. Kaisa Poutanen gratefully acknowledges funding from the Academy of Finland.
Keywords
- Acylcarnitine
- Amino acid
- Glycolytic products
- Insulin
- Metabolomics
- Phosphatidylcholine
- Postprandial changes