Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production

Joosu Kuivanen (Corresponding Author), Peter Richard, Merja Penttilä

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)

Abstract

Background: Synthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries. Results: In the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway - L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH) - were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved. Conclusions: In the current study, an L-ascorbic acid pathway using D-galacturonic acid as a precursor was introduced to a microorganism for the first time. This is also the first report on an engineered filamentous fungus for L-ascorbic acid production and a proof-of-concept of consolidated bioprocess for the production.
Original languageEnglish
Article number2
Number of pages9
JournalMicrobial Cell Factories
Volume14
DOIs
Publication statusPublished - 2015
MoE publication typeA1 Journal article-refereed

Fingerprint

Metabolic engineering
Metabolic Engineering
Ascorbic acid
Ascorbic Acid
Acids
Fungi
galactonate dehydratase
Aspergillus niger
Biomass
Malpighiaceae
Enzymes
Food preservatives
Genes
Euglena gracilis
Aspergillus
Vitamins
Biosynthesis
Enzyme activity
galacturonic acid
Polysaccharides

Keywords

  • L-ascorbic acid
  • D-galacturonic acid
  • L-galactonic acid
  • Citrus peel
  • Aspergillus niger
  • Metabolic engineering

Cite this

@article{399273e840244ca3bc9a5f8d61dd0550,
title = "Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production",
abstract = "Background: Synthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries. Results: In the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway - L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH) - were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved. Conclusions: In the current study, an L-ascorbic acid pathway using D-galacturonic acid as a precursor was introduced to a microorganism for the first time. This is also the first report on an engineered filamentous fungus for L-ascorbic acid production and a proof-of-concept of consolidated bioprocess for the production.",
keywords = "L-ascorbic acid, D-galacturonic acid, L-galactonic acid, Citrus peel, Aspergillus niger, Metabolic engineering",
author = "Joosu Kuivanen and Peter Richard and Merja Penttil{\"a}",
year = "2015",
doi = "10.1186/s12934-014-0184-2",
language = "English",
volume = "14",
journal = "Microbial Cell Factories",
issn = "1475-2859",

}

Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production. / Kuivanen, Joosu (Corresponding Author); Richard, Peter; Penttilä, Merja.

In: Microbial Cell Factories, Vol. 14, 2, 2015.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production

AU - Kuivanen, Joosu

AU - Richard, Peter

AU - Penttilä, Merja

PY - 2015

Y1 - 2015

N2 - Background: Synthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries. Results: In the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway - L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH) - were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved. Conclusions: In the current study, an L-ascorbic acid pathway using D-galacturonic acid as a precursor was introduced to a microorganism for the first time. This is also the first report on an engineered filamentous fungus for L-ascorbic acid production and a proof-of-concept of consolidated bioprocess for the production.

AB - Background: Synthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries. Results: In the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway - L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH) - were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved. Conclusions: In the current study, an L-ascorbic acid pathway using D-galacturonic acid as a precursor was introduced to a microorganism for the first time. This is also the first report on an engineered filamentous fungus for L-ascorbic acid production and a proof-of-concept of consolidated bioprocess for the production.

KW - L-ascorbic acid

KW - D-galacturonic acid

KW - L-galactonic acid

KW - Citrus peel

KW - Aspergillus niger

KW - Metabolic engineering

U2 - 10.1186/s12934-014-0184-2

DO - 10.1186/s12934-014-0184-2

M3 - Article

VL - 14

JO - Microbial Cell Factories

JF - Microbial Cell Factories

SN - 1475-2859

M1 - 2

ER -