Abstract
Original language | English |
---|---|
Pages (from-to) | 73-85 |
Number of pages | 13 |
Journal | Phytochemistry |
Volume | 99 |
DOIs | |
Publication status | Published - 2014 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Keywords
- Flux analysis
- geraniol
- metabolic engineering
- terpenoid indole alkoloids
Cite this
}
Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production. / Masakapalli, S K; Ritala, Anneli; Dong, L; van der Krol, A R; Oksman-Caldentey, Kirsi-Marja; Ratcliffe, R G; Sweetlove, L J (Corresponding Author).
In: Phytochemistry, Vol. 99, 2014, p. 73-85.Research output: Contribution to journal › Article › Scientific › peer-review
TY - JOUR
T1 - Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production
AU - Masakapalli, S K
AU - Ritala, Anneli
AU - Dong, L
AU - van der Krol, A R
AU - Oksman-Caldentey, Kirsi-Marja
AU - Ratcliffe, R G
AU - Sweetlove, L J
PY - 2014
Y1 - 2014
N2 - The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux maps of central carbon metabolism for transgenic lines over-expressing (i) plastid-targeted geraniol synthase (pGES) from Valeriana officinalis, and (ii) pGES in combination with plastid-targeted geranyl pyrophosphate synthase from Arabidopsis thaliana (pGES + pGPPS), as well as for wild type and control-vector-transformed roots. Fluxes were constrained by the redistribution of label from [1-13C]-, [2-13C]- or [13C6]glucose into amino acids, sugars and organic acids at isotopic steady state, and by biomass output fluxes determined from the fractionation of [U-14C]glucose into insoluble polymers. No significant differences in growth and biomass composition were observed between the lines. The pGES line accumulated significant amounts of geraniol/geraniol glycosides (151 ± 24 ng/mg dry weight) and the de novo synthesis of geraniol in pGES was confirmed by 13C labelling analysis. The pGES + pGPPS also accumulated geraniol and geraniol glycosides, but to lower levels than the pGES line. Although there was a distinct impact of the transgenes at the level of geraniol synthesis, other network fluxes were unaffected, reflecting the capacity of central metabolism to meet the relatively modest demand for increased precursors in the transgenic lines. It is concluded that re-engineering of the terpenoid indole alkaloid pathway will only require simultaneous manipulation of the steps producing the pathway precursors that originate in central metabolism in tissues engineered to produce at least an order of magnitude more geraniol than has been achieved so far
AB - The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux maps of central carbon metabolism for transgenic lines over-expressing (i) plastid-targeted geraniol synthase (pGES) from Valeriana officinalis, and (ii) pGES in combination with plastid-targeted geranyl pyrophosphate synthase from Arabidopsis thaliana (pGES + pGPPS), as well as for wild type and control-vector-transformed roots. Fluxes were constrained by the redistribution of label from [1-13C]-, [2-13C]- or [13C6]glucose into amino acids, sugars and organic acids at isotopic steady state, and by biomass output fluxes determined from the fractionation of [U-14C]glucose into insoluble polymers. No significant differences in growth and biomass composition were observed between the lines. The pGES line accumulated significant amounts of geraniol/geraniol glycosides (151 ± 24 ng/mg dry weight) and the de novo synthesis of geraniol in pGES was confirmed by 13C labelling analysis. The pGES + pGPPS also accumulated geraniol and geraniol glycosides, but to lower levels than the pGES line. Although there was a distinct impact of the transgenes at the level of geraniol synthesis, other network fluxes were unaffected, reflecting the capacity of central metabolism to meet the relatively modest demand for increased precursors in the transgenic lines. It is concluded that re-engineering of the terpenoid indole alkaloid pathway will only require simultaneous manipulation of the steps producing the pathway precursors that originate in central metabolism in tissues engineered to produce at least an order of magnitude more geraniol than has been achieved so far
KW - Flux analysis
KW - geraniol
KW - metabolic engineering
KW - terpenoid indole alkoloids
U2 - 10.1016/j.phytochem.2013.12.007
DO - 10.1016/j.phytochem.2013.12.007
M3 - Article
VL - 99
SP - 73
EP - 85
JO - Phytochemistry
JF - Phytochemistry
SN - 0031-9422
ER -