TY - JOUR
T1 - Metabolic profiling of sourdough fermented wheat and rye bread
AU - Koistinen, Ville M.
AU - Mattila, Outi
AU - Katina, Kati
AU - Poutanen, Kaisa
AU - Aura, Anna Marja
AU - Hanhineva, Kati
N1 - Funding Information:
We thank Dr Hiroshi Tsugawa from RIKEN Yokohama Branch for assistance in the use of MS-DIAL and MS-FINDER software, Dr Riikka Juvonen from VTT for instructing the preparation of the sourdough starters, Miia Reponen from University of Eastern Finland for assistance in the LC–MS analysis, and MSc Marco Russo from University of Naples Federico II for compiling the in-house database into format supported by MS-DIAL. This work was supported financially by Academy of Finland, Lantmännen Research Foundation, and Biocenter Finland.
Publisher Copyright:
© 2018 The Author(s).
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker's yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC-QTOF-MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.
AB - Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker's yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC-QTOF-MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.
UR - http://www.scopus.com/inward/record.url?scp=85045202597&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-24149-w
DO - 10.1038/s41598-018-24149-w
M3 - Article
AN - SCOPUS:85045202597
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 5684
ER -