Methods and Models for Accelerating Dynamic Simulation of Fluid Power Circuits

Research output: ThesisDissertationMonograph

Abstract

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Original languageEnglish
QualificationDoctor Degree
Awarding Institution
  • Lappeenranta University of Technology
Supervisors/Advisors
  • Handroos, Heikki, Supervisor, External person
Award date23 May 2011
Publisher
Print ISBNs978-952-265-087-0
Electronic ISBNs978-952-265-088-7
Publication statusPublished - 23 May 2011
MoE publication typeG4 Doctoral dissertation (monograph)

Keywords

  • fluid power circuit
  • dynamic simulation
  • two-regime
  • orifice model
  • small volume
  • pseudo-dynamic solver
  • steady-state solution

Fingerprint Dive into the research topics of 'Methods and Models for Accelerating Dynamic Simulation of Fluid Power Circuits'. Together they form a unique fingerprint.

Cite this