Projects per year
Abstract
Additive manufacturing is a manufacturing route able to produce complex components with minimal raw-material utilization and high-level of process control. However, the rapid solidification rates, strong temperature gradients and extremely localized melting lead to non-equilibrium microstructures that require a better understanding of solid-state transformation, solidification behaviour and structure-property-performance workflow of AMed materials. HEAs unique compositions and complex microstructures slow down considerably the AM parameter optimization of these materials. Numerical simulations offer a better understanding of the structure-properties-performance of the materials with a reduced number or physical experiments. Hence, a multi-scale modelling approach is taken. For the alloy design phase, Calphad analysis together with DFT simulations and machine learning tools are used to find the most promising HEA compositions. Studying the different microstructural defects, deformation mechanisms that affect the strain hardening potential, Crystal Plasticity models are developed to evaluate the performance of AMed HEAs and the overall workflow.
Original language | English |
---|---|
Title of host publication | World PM2022 Congress Proceedings |
Publisher | European Powder Metallurgy Association (EPMA) |
ISBN (Print) | 978-1-899072-55-2 |
Publication status | Published - 10 Oct 2022 |
MoE publication type | A4 Article in a conference publication |
Event | World PM2022 Congress & Exhibition - Lyon, France Duration: 9 Oct 2022 → 13 Oct 2022 |
Conference
Conference | World PM2022 Congress & Exhibition |
---|---|
Country/Territory | France |
City | Lyon |
Period | 9/10/22 → 13/10/22 |
Fingerprint
Dive into the research topics of 'Micromechanical modelling of additively manufactured high entropy alloys to establish structure-properties-performance workflow'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ACHIEF: Innovative high performance Alloys and Coatings for HIghly EFficient intensive energy processes
Andersson, T. (Manager), Laukkanen, A. (Participant), Suhonen, T. (Participant), Pinomaa, T. (Participant), Lindroos, M. (Participant), Kaipainen, J. (Participant), Ren, S. (Participant), Vallejo Rodriguez, L. (Participant) & Lagerbom, J. (Participant)
1/10/20 → 31/03/24
Project: EU project