Microwave quantum diode

Rishabh Upadhyay (Corresponding Author), Dmitry S. Golubev, Yu Cheng Chang, George Thomas, Andrew Guthrie, Joonas T. Peltonen, Jukka P. Pekola

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)

Abstract

The fragile nature of quantum circuits is a major bottleneck to scalable quantum applications. Operating at cryogenic temperatures, quantum circuits are highly vulnerable to amplifier backaction and external noise. Non-reciprocal microwave devices such as circulators and isolators are used for this purpose. These devices have a considerable footprint in cryostats, limiting the scalability of quantum circuits. As a proof-of-concept, here we report a compact microwave diode architecture, which exploits the non-linearity of a superconducting flux qubit. At the qubit degeneracy point we experimentally demonstrate a significant difference between the power levels transmitted in opposite directions. The observations align with the proposed theoretical model. At − 99 dBm input power, and near the qubit-resonator avoided crossing region, we report the transmission rectification ratio exceeding 90% for a 50 MHz wide frequency range from 6.81 GHz to 6.86 GHz, and over 60% for the 250 MHz range from 6.67 GHz to 6.91 GHz. The presented architecture is compact, and easily scalable towards multiple readout channels, potentially opening up diverse opportunities in quantum information, microwave read-out and optomechanics.

Original languageEnglish
Article number630
JournalNature Communications
Volume15
DOIs
Publication statusPublished - 20 Jan 2024
MoE publication typeA1 Journal article-refereed

Funding

We acknowledge the financial support from Academy of Finland grants (grant number 297240, 312057 and 303677), and from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) programme (grant number 742559) and Marie Sklodowska-Curie actions (grant agreements 766025). We sincerely recognize the provision of facilities by Micronova Nanofabrication Centre, and OtaNano - Low Temperature Laboratory of Aalto University which is a part of European Microkelvin Platform EMP (grant number. 824109), to perform this research. We thank and acknowledge VTT Technical Research Center for provision of high quality sputtered Nb films.

Fingerprint

Dive into the research topics of 'Microwave quantum diode'. Together they form a unique fingerprint.

Cite this