TY - JOUR
T1 - Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReOx/ZrO2 catalyst
T2 - Zirconia and rhenium oxide as efficient dehydration promoters
AU - Sirous-Rezaei, Pouya
AU - Jae, Jungho
AU - Ha, Jeong Myeong
AU - Ko, Chang Hyun
AU - Kim, Ji Man
AU - Jeon, Jong Ki
AU - Park, Young Kwon
N1 - Funding Information:
This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2017M1A2A2087674). Also, this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028818).
Publisher Copyright:
© 2018 The Royal Society of Chemistry.
PY - 2018
Y1 - 2018
N2 - Strong adsorption of phenolics on zeolite acid sites causes high trapping inside zeolite channels and low catalytic activity of zeolite-supported catalysts in atmospheric pressure hydrodeoxygenation (HDO) of lignin-derived phenolics. This adsorption is more severe at low temperatures, and restricts the atmospheric HDO of phenolics to high reaction temperatures. The purpose of this research was to develop a catalyst with low phenolic trapping potential and high HDO efficiency under mild reaction conditions. Among the tested catalysts (Fe/HBeta, FeReOx/HBeta, Fe/MCM-41, ReOx/MCM-41, FeReOx/MCM-41, Fe/ZrO2 and FeReOx/ZrO2), the novel catalyst of FeReOx/ZrO2 exhibited the highest catalytic efficiency for mild-condition (pressure: 1 atm and temperature <350 °C) HDO of phenolics (guaiacol, m-cresol and anisole), and led to the selective production of BTX aromatics. Compared to Fe/HBeta(38) as a zeolite-supported catalyst, FeReOx/ZrO2 displayed remarkably enhanced performance, and its catalytic activity for the HDO of m-cresol at 350 °C was almost twice higher than that of Fe/HBeta(38) at 500 °C. Importantly, FeReOx/ZrO2 revealed a high HDO efficiency (BTX yield of 50.5 wt% with phenolic trapping below 5 wt%) at a low temperature of 250 °C, while Fe/HBeta(38) almost lost its entire catalytic activity at this temperature, and gave a low BTX yield of 3.0 wt% with a high trapped phenolic yield of 83.1 wt%. The remarkable catalytic activity of FeReOx/ZrO2 in the HDO of phenolics at atmospheric pressure and temperatures as low as 250 °C is a result of its mesoporosity and oxophilicity as well as its well-balanced acidity induced by both rhenium oxide and zirconia support causing a high dehydration efficiency.
AB - Strong adsorption of phenolics on zeolite acid sites causes high trapping inside zeolite channels and low catalytic activity of zeolite-supported catalysts in atmospheric pressure hydrodeoxygenation (HDO) of lignin-derived phenolics. This adsorption is more severe at low temperatures, and restricts the atmospheric HDO of phenolics to high reaction temperatures. The purpose of this research was to develop a catalyst with low phenolic trapping potential and high HDO efficiency under mild reaction conditions. Among the tested catalysts (Fe/HBeta, FeReOx/HBeta, Fe/MCM-41, ReOx/MCM-41, FeReOx/MCM-41, Fe/ZrO2 and FeReOx/ZrO2), the novel catalyst of FeReOx/ZrO2 exhibited the highest catalytic efficiency for mild-condition (pressure: 1 atm and temperature <350 °C) HDO of phenolics (guaiacol, m-cresol and anisole), and led to the selective production of BTX aromatics. Compared to Fe/HBeta(38) as a zeolite-supported catalyst, FeReOx/ZrO2 displayed remarkably enhanced performance, and its catalytic activity for the HDO of m-cresol at 350 °C was almost twice higher than that of Fe/HBeta(38) at 500 °C. Importantly, FeReOx/ZrO2 revealed a high HDO efficiency (BTX yield of 50.5 wt% with phenolic trapping below 5 wt%) at a low temperature of 250 °C, while Fe/HBeta(38) almost lost its entire catalytic activity at this temperature, and gave a low BTX yield of 3.0 wt% with a high trapped phenolic yield of 83.1 wt%. The remarkable catalytic activity of FeReOx/ZrO2 in the HDO of phenolics at atmospheric pressure and temperatures as low as 250 °C is a result of its mesoporosity and oxophilicity as well as its well-balanced acidity induced by both rhenium oxide and zirconia support causing a high dehydration efficiency.
UR - http://www.scopus.com/inward/record.url?scp=85045048353&partnerID=8YFLogxK
U2 - 10.1039/c7gc03823b
DO - 10.1039/c7gc03823b
M3 - Article
AN - SCOPUS:85045048353
SN - 1463-9262
VL - 20
SP - 1472
EP - 1483
JO - Green Chemistry
JF - Green Chemistry
IS - 7
ER -