TY - JOUR
T1 - Mitochondrial myopathy induces a starvation-like response
AU - Tyynismaa, Henna
AU - Carroll, Christopher J.
AU - Raimundo, Nuno
AU - Ahola-Erkkilä, Sofia
AU - Wenz, Tina
AU - Ruhanen, Heini
AU - Guse, Kilian
AU - Hemminki, Akseli
AU - Peltola-Mjøsund, Katja E.
AU - Tulkki, Valtteri
AU - Orešič, Matej
AU - Moraes, Carlos T.
AU - Pietiläinen, Kirsi
AU - Hovatta, Iiris
AU - Suomalainen, Anu
PY - 2010
Y1 - 2010
N2 - Mitochondrial respiratory chain (RC) deficiency is among the most common causes of inherited metabolic disease, but its physiological consequences are poorly characterized. We studied the skeletal muscle gene expression profiles of mice with late-onset mitochondrial myopathy. These animals express a dominant patient mutation in the mitochondrial replicative helicase Twinkle, leading to accumulation of multiple mtDNA deletions and progressive subtle RC deficiency in the skeletal muscle. The global gene expression pattern of the mouse skeletal muscle showed induction of pathways involved in amino acid starvation response and activation of Akt signaling. Furthermore, the muscle showed induction of a fasting-related hormone, fibroblast growth factor 21 (Fgf21). This secreted regulator of lipid metabolism was also elevated in the mouse serum, and the animals showed widespread changes in their lipid metabolism: small adipocyte size, low fat content in the liver and resistance to high-fat diet. We propose that RC deficiency induces a mitochondrial stress response, with local and global changes mimicking starvation, in a normal nutritional state. These results may have important implications for understanding the metabolic consequences of mitochondrial myopathies.
AB - Mitochondrial respiratory chain (RC) deficiency is among the most common causes of inherited metabolic disease, but its physiological consequences are poorly characterized. We studied the skeletal muscle gene expression profiles of mice with late-onset mitochondrial myopathy. These animals express a dominant patient mutation in the mitochondrial replicative helicase Twinkle, leading to accumulation of multiple mtDNA deletions and progressive subtle RC deficiency in the skeletal muscle. The global gene expression pattern of the mouse skeletal muscle showed induction of pathways involved in amino acid starvation response and activation of Akt signaling. Furthermore, the muscle showed induction of a fasting-related hormone, fibroblast growth factor 21 (Fgf21). This secreted regulator of lipid metabolism was also elevated in the mouse serum, and the animals showed widespread changes in their lipid metabolism: small adipocyte size, low fat content in the liver and resistance to high-fat diet. We propose that RC deficiency induces a mitochondrial stress response, with local and global changes mimicking starvation, in a normal nutritional state. These results may have important implications for understanding the metabolic consequences of mitochondrial myopathies.
U2 - 10.1093/hmg/ddq310
DO - 10.1093/hmg/ddq310
M3 - Article
SN - 0964-6906
VL - 19
SP - 3948
EP - 3958
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 20
ER -