Modeling of nickel-based hydrotalcite catalyst coated on heat exchanger reactors for CO2 methanation

Francisco Vidal Vázquez*, Johanna Kihlman, Ajenthan Mylvaganam, Pekka Simell, Mari Leena Koskinen-Soivi, Ville Alopaeus

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    26 Citations (Scopus)

    Abstract

    This study presents the kinetic modeling of CO2 methanation reaction using 15 wt% Ni/Mg/Al hydrotalcite coated catalyst. Power law and Langmuir-Hinshelwood-Hougens-Watson (LHHW) models were used to represent the kinetics of CO2 methanation. LHHW model displayed better representation of the kinetics and was chosen for modeling the CO2 methanation reaction in a plate type heat exchanger reactor. Comparison between experiments, 1D model, and 2D model proved the reliability of using internally coated tubular reactor for kinetic modeling of coated catalyst. This work also performed modeling of a plate type heat exchanger reactor with catalytically coated corrugated plates for CO2 methanation. Heat exchanger reactors with coated catalyst allow controlling the reaction temperature and thus, avoiding temperature runaway owing to the highly exothermic CO2 methanation reaction. The corrugated pattern created by the opposing corrugated plates of the plate heat exchanger reactor proved to be excellent for distributing the flow homogeneously inside each reaction channel and the entire reactor. In this reactor, 92% CO2 conversion was achieved at GHSV = 4400 h−1, 573 K and 5 bar. The good performance of this reactor was due to the high activity displayed by Ni-hydrotalcite coated catalyst, homogeneous flow distribution and high surface area of the reactor. Thus, plate type heat exchanger reactor with catalytically coated corrugated plates proved to be suitable alternative to plate heat exchanger reactors with microchannel plates.

    Original languageEnglish
    Pages (from-to)694-707
    Number of pages14
    JournalChemical Engineering Journal
    Volume349
    DOIs
    Publication statusPublished - 1 Oct 2018
    MoE publication typeA1 Journal article-refereed

    Keywords

    • Carbon capture and utilization
    • CO methanation
    • Coated catalyst
    • Heat exchanger reactor
    • Hydrotalcite
    • Reactor modeling

    Fingerprint

    Dive into the research topics of 'Modeling of nickel-based hydrotalcite catalyst coated on heat exchanger reactors for CO2 methanation'. Together they form a unique fingerprint.

    Cite this