Abstract
The utilization of S. eubayanus has recently become a topic of interest due to the novel organoleptic properties imparted to beer. However, the utilization of S. eubayanus in brewing requires the comprehension of the mechanisms that underlie fermentative differences generated from its natural genetic variability. Here, we evaluated fermentation performance and volatile compound production in ten genetically distinct S. eubayanus strains in a brewing fermentative context. The evaluated strains showed a broad phenotypic spectrum, some of them exhibiting a high fermentation capacity and high levels of volatile esters and/or higher alcohols. Subsequently, we obtained molecular profiles by generating ‘end-to-end’ genome assemblies, as well as metabolome and transcriptome profiling of two Patagonian isolates exhibiting significant differences in beer aroma profiles. These strains showed clear differences in concentrations of intracellular metabolites, including amino acids, such as valine, leucine and isoleucine, likely impacting the production of 2-methylpropanol and 3-methylbutanol. These differences in the production of volatile compounds are attributed to gene expression variation, where the most profound differentiation is attributed to genes involved in assimilatory sulfate reduction, which in turn validates phenotypic differences in H2S production. This study lays a solid foundation for future research to improve fermentation performance and select strains for new lager styles based on aroma and metabolic profiles.
Original language | English |
---|---|
Pages (from-to) | 1012-1025 |
Journal | Microbial Biotechnology |
Volume | 13 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Jul 2020 |
MoE publication type | A1 Journal article-refereed |
Funding
This research was supported to FC by Comisión Nacional de Investigación Científica y Tecnológica CONICYT FONDECYT (1180161) and Millennium Institute for Integrative Biology (iBio). WM is supported by CONICYT FONDECYT (grant 3190532). CV is supported by CONICYT FONDECYT (grant 3170404). RN is supported by FIC ‘Transferencia Levaduras Nativas para Cerveza Artesanal’ and Fondecyt grant 1180917. KU was funded by USA1899 – Vridei 021943CR-PAP Universidad de Santiago de Chile. FC, RN, SO and GF were funded by PROGRAMA DE COOPERACIÓN CIENTÍFICA ECOS-CONICYT ECOS180003.