Abstract
Consider a set of objects, abstracted to points of a spatially stationary point process in Rd, that deliver to each other a service at a rate depending on their distance. Assume that the points arrive as a Poisson process and leave when their service requirements have been fulfilled. We show how such a process can be constructed and establish its ergodicity under fairly general conditions. We also establish a hierarchy of integral balance relations between the factorial moment measures and show that the time-stationary process exhibits a repulsivity property.
Original language | English |
---|---|
Pages (from-to) | 95-140 |
Journal | Queueing Systems |
Volume | 86 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 1 Jun 2017 |
MoE publication type | A1 Journal article-refereed |
Keywords
- spatial birth and death process
- infinite particle system
- palm probability
- coupling from the past
- moment measure
- repulsion