Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water

Albert Nasibulin, Esko Kauppinen (Corresponding Author), David Brown, Jorma Jokiniemi

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Copper (II) acetylacetonate (Cu(acac)2) vapor decomposition and subsequent copper and copper (I) oxide particle formation were studied in a vertical laminar flow reactor in the presence of hydrogen and water vapor in a nitrogen atmosphere. The presence of hydrogen does not significantly affect on the decomposition rate. The most reactive conditions for the precursor decomposition appear when water vapor is introduced into the system. A mechanism for Cu(acac)2 decomposition in the presence of water has been proposed. The reaction pathway can be divided into three steps:  formation of gaseous hydrate complex; a proton transition from the coordinated water to a ligand and further liberation in the form of gaseous acetylacetone; the partial destruction (oxidation) of the resulting ligands and reduction reaction of Cu2+ to Cu0. The formation of copper particles leads to a surface catalytic reaction of the organic decomposition products. As a result of this reaction, low volatile long chain compounds containing ketone, alcohol, ester, and ether groups are formed. The crystallinity of the particles depends on the experimental conditions and changes from copper to copper (I) oxide when the precursor vapor pressure is decreased from PCu(acac)2 = 6 to 0.13 Pa at tfurn = 432 °C and the temperarture is increased to tfurn = 705 °C at PCu(acac)2 = 6 Pa. A qualitative thermodynamic explanation of the change of crystalline phases is proposed. Primary particle size distributions were measured at tfurn = 432 °C. The size of the particles is dependent on PCu(acac)2; the geometric mean diameter of Dp = 27.3 nm (with geometric standard deviation of σg = 1.34) at PCu(acac)2 = 6 Pa, Dp = 15.6 nm (σg = 1.35) at PCu(acac)2 = 1.9 Pa, Dp = 5.2 nm (σg = 1.33) from TEM images and Dp = 6.1 nm (σg = 1.35) from DMA measurements at PCu(acac)2 = 0.13 Pa, and Dp = 4.2 nm (σg = 1.19) from DMA measurements at PCu(acac)2 = 0.07 Pa.
Original languageEnglish
Pages (from-to)11067-11075
JournalThe Journal of Physical Chemistry B
Volume105
Issue number45
DOIs
Publication statusPublished - 2001
MoE publication typeA1 Journal article-refereed

Fingerprint

Hydrogen
Vapors
vapors
Nanoparticles
Decomposition
Copper
decomposition
copper
nanoparticles
Water
hydrogen
Copper oxides
water
Dynamic mechanical analysis
Water vapor
Ligands
water vapor
Steam
acetylacetone
ligands

Cite this

Nasibulin, Albert ; Kauppinen, Esko ; Brown, David ; Jokiniemi, Jorma. / Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water. In: The Journal of Physical Chemistry B. 2001 ; Vol. 105, No. 45. pp. 11067-11075.
@article{c9a8a5415dd04a60868edc7b09312f5b,
title = "Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water",
abstract = "Copper (II) acetylacetonate (Cu(acac)2) vapor decomposition and subsequent copper and copper (I) oxide particle formation were studied in a vertical laminar flow reactor in the presence of hydrogen and water vapor in a nitrogen atmosphere. The presence of hydrogen does not significantly affect on the decomposition rate. The most reactive conditions for the precursor decomposition appear when water vapor is introduced into the system. A mechanism for Cu(acac)2 decomposition in the presence of water has been proposed. The reaction pathway can be divided into three steps:  formation of gaseous hydrate complex; a proton transition from the coordinated water to a ligand and further liberation in the form of gaseous acetylacetone; the partial destruction (oxidation) of the resulting ligands and reduction reaction of Cu2+ to Cu0. The formation of copper particles leads to a surface catalytic reaction of the organic decomposition products. As a result of this reaction, low volatile long chain compounds containing ketone, alcohol, ester, and ether groups are formed. The crystallinity of the particles depends on the experimental conditions and changes from copper to copper (I) oxide when the precursor vapor pressure is decreased from PCu(acac)2 = 6 to 0.13 Pa at tfurn = 432 °C and the temperarture is increased to tfurn = 705 °C at PCu(acac)2 = 6 Pa. A qualitative thermodynamic explanation of the change of crystalline phases is proposed. Primary particle size distributions were measured at tfurn = 432 °C. The size of the particles is dependent on PCu(acac)2; the geometric mean diameter of Dp = 27.3 nm (with geometric standard deviation of σg = 1.34) at PCu(acac)2 = 6 Pa, Dp = 15.6 nm (σg = 1.35) at PCu(acac)2 = 1.9 Pa, Dp = 5.2 nm (σg = 1.33) from TEM images and Dp = 6.1 nm (σg = 1.35) from DMA measurements at PCu(acac)2 = 0.13 Pa, and Dp = 4.2 nm (σg = 1.19) from DMA measurements at PCu(acac)2 = 0.07 Pa.",
author = "Albert Nasibulin and Esko Kauppinen and David Brown and Jorma Jokiniemi",
year = "2001",
doi = "10.1021/jp0114135",
language = "English",
volume = "105",
pages = "11067--11075",
journal = "The Journal of Physical Chemistry B",
issn = "1520-6106",
publisher = "American Chemical Society ACS",
number = "45",

}

Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water. / Nasibulin, Albert; Kauppinen, Esko (Corresponding Author); Brown, David; Jokiniemi, Jorma.

In: The Journal of Physical Chemistry B, Vol. 105, No. 45, 2001, p. 11067-11075.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water

AU - Nasibulin, Albert

AU - Kauppinen, Esko

AU - Brown, David

AU - Jokiniemi, Jorma

PY - 2001

Y1 - 2001

N2 - Copper (II) acetylacetonate (Cu(acac)2) vapor decomposition and subsequent copper and copper (I) oxide particle formation were studied in a vertical laminar flow reactor in the presence of hydrogen and water vapor in a nitrogen atmosphere. The presence of hydrogen does not significantly affect on the decomposition rate. The most reactive conditions for the precursor decomposition appear when water vapor is introduced into the system. A mechanism for Cu(acac)2 decomposition in the presence of water has been proposed. The reaction pathway can be divided into three steps:  formation of gaseous hydrate complex; a proton transition from the coordinated water to a ligand and further liberation in the form of gaseous acetylacetone; the partial destruction (oxidation) of the resulting ligands and reduction reaction of Cu2+ to Cu0. The formation of copper particles leads to a surface catalytic reaction of the organic decomposition products. As a result of this reaction, low volatile long chain compounds containing ketone, alcohol, ester, and ether groups are formed. The crystallinity of the particles depends on the experimental conditions and changes from copper to copper (I) oxide when the precursor vapor pressure is decreased from PCu(acac)2 = 6 to 0.13 Pa at tfurn = 432 °C and the temperarture is increased to tfurn = 705 °C at PCu(acac)2 = 6 Pa. A qualitative thermodynamic explanation of the change of crystalline phases is proposed. Primary particle size distributions were measured at tfurn = 432 °C. The size of the particles is dependent on PCu(acac)2; the geometric mean diameter of Dp = 27.3 nm (with geometric standard deviation of σg = 1.34) at PCu(acac)2 = 6 Pa, Dp = 15.6 nm (σg = 1.35) at PCu(acac)2 = 1.9 Pa, Dp = 5.2 nm (σg = 1.33) from TEM images and Dp = 6.1 nm (σg = 1.35) from DMA measurements at PCu(acac)2 = 0.13 Pa, and Dp = 4.2 nm (σg = 1.19) from DMA measurements at PCu(acac)2 = 0.07 Pa.

AB - Copper (II) acetylacetonate (Cu(acac)2) vapor decomposition and subsequent copper and copper (I) oxide particle formation were studied in a vertical laminar flow reactor in the presence of hydrogen and water vapor in a nitrogen atmosphere. The presence of hydrogen does not significantly affect on the decomposition rate. The most reactive conditions for the precursor decomposition appear when water vapor is introduced into the system. A mechanism for Cu(acac)2 decomposition in the presence of water has been proposed. The reaction pathway can be divided into three steps:  formation of gaseous hydrate complex; a proton transition from the coordinated water to a ligand and further liberation in the form of gaseous acetylacetone; the partial destruction (oxidation) of the resulting ligands and reduction reaction of Cu2+ to Cu0. The formation of copper particles leads to a surface catalytic reaction of the organic decomposition products. As a result of this reaction, low volatile long chain compounds containing ketone, alcohol, ester, and ether groups are formed. The crystallinity of the particles depends on the experimental conditions and changes from copper to copper (I) oxide when the precursor vapor pressure is decreased from PCu(acac)2 = 6 to 0.13 Pa at tfurn = 432 °C and the temperarture is increased to tfurn = 705 °C at PCu(acac)2 = 6 Pa. A qualitative thermodynamic explanation of the change of crystalline phases is proposed. Primary particle size distributions were measured at tfurn = 432 °C. The size of the particles is dependent on PCu(acac)2; the geometric mean diameter of Dp = 27.3 nm (with geometric standard deviation of σg = 1.34) at PCu(acac)2 = 6 Pa, Dp = 15.6 nm (σg = 1.35) at PCu(acac)2 = 1.9 Pa, Dp = 5.2 nm (σg = 1.33) from TEM images and Dp = 6.1 nm (σg = 1.35) from DMA measurements at PCu(acac)2 = 0.13 Pa, and Dp = 4.2 nm (σg = 1.19) from DMA measurements at PCu(acac)2 = 0.07 Pa.

U2 - 10.1021/jp0114135

DO - 10.1021/jp0114135

M3 - Article

VL - 105

SP - 11067

EP - 11075

JO - The Journal of Physical Chemistry B

JF - The Journal of Physical Chemistry B

SN - 1520-6106

IS - 45

ER -